Reality and its representations: a mathematical model

Laurent Lafforgue

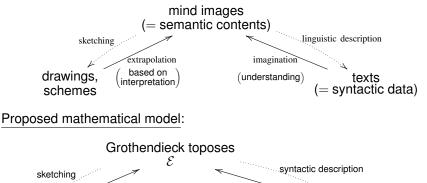
(Huawei Paris Research Center, Boulogne-Billancourt, France)

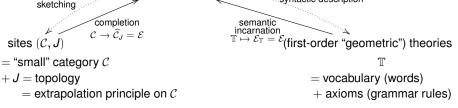
AI Theory Workshop

Friday November 24th, 2023

The double expression of semantic contents

and its modelling by topos theory:





L. Lafforgue

Reality

Why can we propose Grothendieck toposes

for modelling elements of reality?

- For us human beings:
 - Any aspects or elements of reality can be <u>described</u> or at least talked about by appropriate forms of human language.
 - On the other hand, these linguistic descriptions are not unique. Reality is independent of its multiple descriptions.
- In topos theory:

 Any topos & can be presented as a geometric incarnation of the semantic contents of some formalized language T (technically, a "first-order geometric theory") in the sense that there is an identification

 $\{\text{points of the topos } \mathcal{E}\} \leftrightarrow \{\underline{\text{models}} \text{ of the theory } \mathbb{T}\}.$

- Such a linguistic description of a topos \mathcal{E} is not unique. Any topos \mathcal{E} incarnates the semantics of infinitely many theories \mathbb{T} .
- This correspondence is complete in the sense that the semantics of any such theory T is incarnated by a topos *E*_T.

Laf		

Geometric sketching of toposes:

- Start with an element of reality or semantic content which is supposed to be mathematically incarnated by an unknown topos \mathcal{E} .
- Technically, a topos is a special type of "category" = "mathematical country" consisting in

 - $\begin{cases} & \underline{\text{cities}} \ A, B, C, \cdots \\ & \underline{\text{itineraries}} \ A \to B \text{ between cities,} \\ & \underline{a} \ \underline{\text{law}} \text{ for } \underline{\text{composing itineraries}} \ A \to B \to C. \end{cases}$
- As a category, a topos is "complete" in the sense that anything which can be mathematically extrapolated from elements of the topos exists in the topos.
- As it is complete, a topos \mathcal{E} is "too big".
- It needs to be approximated by "small" categories

$$\mathcal{C} \longrightarrow \mathcal{E}.$$

A full topos & can be reconstructed from a small category

 $\mathcal{C} \longrightarrow \mathcal{E}$ if \mathcal{C} is "dense" in \mathcal{E} .

In that case, there is a unique "topology" (= extrapolation principle)

J on \mathcal{C} such that $\widehat{\mathcal{C}}_{\mathcal{A}} \xrightarrow{\sim} \mathcal{E}$.

Linguistic description of toposes:

- Starting with an unknown topos \mathcal{E} , suppose we have identified enough elements of \mathcal{E} to define a sketching by a small category $\mathcal{C} \longrightarrow \mathcal{E}$.
- Suppose this sketching is "dense" so that

 $\widehat{\mathcal{C}}_J \xrightarrow{\sim} \mathcal{E}$ for some topology *J*.

For a linguistic description of *E*, we need a (first-order geometric) theory T which is well-adapted to talk about *E* and *C* in the sense that there exists a natural

"naming functor"

$$\begin{array}{ll} \hline \mathcal{C} \longrightarrow \mathcal{C}_{\mathbb{T}} & = & \text{"syntactic category" of } \mathbb{T} \text{ consisting in} \\ \hline & & \hline \left\{ \underline{\underline{cities}} = \underline{formulas} \text{ in the vocabulary of } \mathbb{T}, \\ \underline{\underline{itineraries}} = \mathbb{T} \text{-provable implications} \end{array} \right.$$

inducing a topos morphism $\widehat{\mathcal{C}}_J \longrightarrow (\widehat{\mathcal{C}}_{\mathbb{T}})_{J_{\mathbb{T}}} = \mathcal{E}_{\mathbb{T}}.$

If this morphism is an embedding C_J → E_T, there is a "quotient theory" T' of T (with the same vocabulary and more axioms) such that C_J → E_T, so that T' describes C_J ≃ E.

Partial sketching of toposes:

 Starting from an unknown topos *E* (incarnating some element of reality or <u>semantic content</u>), we would want to draw a <u>"dense" sketch</u>

$$\mathcal{C} \longrightarrow \mathcal{E}$$

by a category $\ensuremath{\mathcal{C}}$ which is

finite (or at least can be described with finitely many words).

- This is not possible in general.
- · This means that we have to accept partial sketchings

$$\mathcal{C} \longrightarrow \mathcal{E}$$

which are <u>not dense</u>:

there is no equivalence $\widehat{\mathcal{C}}_J \xrightarrow{\sim} \mathcal{E}$.

- Theoretically, such a C → E defines a canonical topology J on C inducing a topos morphism C
 _J → E.
 But it cannot be constructed on C as E is not known.
- This means that the interpretation of C(incarnated in a topology J = extrapolation principle) cannot come from \mathcal{E} .

Joint descriptions of toposes of some type:

· Suppose we start from a family of toposes

 $\mathcal{E}_i, \qquad i \in I,$

which incarnate elements of reality of the same type.

 \rightarrow For instance, all \mathcal{E}_i 's could be real images which we want to sketch and describe.

- As all \$\mathcal{E}_i\$'s incarnate elements of reality of the same type, it is <u>natural</u> to think that there should exist a joint description theory \$\mathbb{T}\$ for all \$\mathcal{E}_i\$'s.
- This means that each *E_i* could be partially (but quite faithfully) <u>sketched</u> by a finite category

$$\mathcal{C}_i \longrightarrow \mathcal{E}_i$$

endowed with a naming functor

$$N_i: \mathcal{C}_i \longrightarrow \mathcal{C}_{\mathbb{T}}$$
.

Interpretation through language:

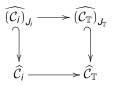
- Suppose that there is a general formalized language \mathbb{T} for describing elements of reality of some type, incarnated in a family of toposes $\mathcal{E}_i, i \in I$.
- This means that there are (quite faithful) sketches

$$\mathcal{C}_i \longrightarrow \mathcal{E}_i$$

by finite categories \mathcal{C}_i endowed with naming functors

$$N_i: \mathcal{C}_i \longrightarrow \mathcal{C}_{\mathbb{T}}$$
.

For each *i*, the syntactic topology J_T of C_T (characterized by (C_T)_{J_T} = E_T) induces a canonical topology J_i on C_i defining a cartesian square of toposes:



 This means that the interpretation J_i on C_i would come from the general description theory T.

L. Lafforgue

General language and partial singular descriptions:

 Suppose that each topos *E_i* in the family <u>can be sketched</u> by a finite category

$$\mathcal{C}_i \longrightarrow \mathcal{E}_i$$

endowed with a naming functor

$$N_i: \mathcal{C}_i \longrightarrow \mathcal{C}_{\mathbb{T}}$$

so that the topology $J_{\mathbb{T}}$ of $\mathcal{C}_{\mathbb{T}}$

induces an interpretation topology J_i on C_i .

Each induced morphism of toposes

$$\widehat{(\mathcal{C}_i)}_{J_i} \longrightarrow \widehat{(\mathcal{C}_{\mathbb{T}})}_{J_{\mathbb{T}}} = \mathcal{E}_{\mathbb{T}}$$

factorizes canonically as

$$(\widehat{\mathcal{C}}_i)_{J_i} \xrightarrow{\text{surjection}} \mathcal{E}_{\mathbb{T}_i} \xrightarrow{\text{embedding}} \mathcal{E}_{\mathbb{T}}$$

for a <u>unique subtopos</u> $\mathcal{E}_{\mathbb{T}_i}$ of $\mathcal{E}_{\mathbb{T}}$ which <u>incarnates</u> the <u>semantic content</u> of a <u>unique quotient theory</u> \mathbb{T}_i of \mathbb{T} : the theory \mathbb{T}_i has the <u>same vocabulary</u> as \mathbb{T} , but has <u>more axioms</u>.

The <u>extra axioms</u> of T_i make up a singular partial description of E_i.

Defining a description language:

- Start with a family of elements of reality considered of the same type.
 - \rightarrow For example: images.
- This similarity should be expressed in the form of a joint description theory T.
- If each "element of reality" in the family is considered to be incarnated by an unknown topos *E_i*, we need the vocabulary and the <u>axioms</u> of T to be rich enough so that:
 - Each \mathcal{E}_i can be sketched by a finite category

$$\mathcal{C}_i \longrightarrow \mathcal{E}_i$$

endowed with a naming functor

$$N_i: \mathcal{C}_i \longrightarrow \mathcal{C}_{\mathbb{T}}$$
.

The topology *J_i* on *C_i* induced by the topology *J_T* of *C_T* should be refined enough to define a topos morphism

$$\widehat{(\mathcal{C}_i)}_{J_i} \longrightarrow \mathcal{E}_i$$
.

Starting from a vocabulary without axioms:

 Starting from a family of elements of reality supposed to be incarnated by some unknown toposes *E_i*, *i* ∈ *I*, one may first define a vocabulary Σ rich enough so that:

Each \mathcal{E}_i can be <u>sketched</u> by a finite category

$$\mathcal{C}_i \longrightarrow \mathcal{E}_i$$

endowed with a naming functor

$$\mathsf{V}_i:\mathcal{C}_i\longrightarrow\mathcal{C}_\Sigma$$
.

• Then, one may look for a topology J on C_{Σ} such that, for any $i \in I$, the induced topology J_i on C_i defines a topos morphism

$$\widehat{(\mathcal{C}_i)}_{J_i} \longrightarrow \mathcal{E}_i.$$

This means that any point of $(\widehat{C_i})_{J_i}$ should make sense as a point of \mathcal{E}_i .

• Such a topology J on C_{Σ} corresponds to a quotient theory \mathbb{T} of Σ (defined by the same vocabulary completed with axioms) which is a description theory for the \mathcal{E}_i 's.

L. Lafforgue