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The core question of language elaboration:
Starting remarks:
e Mathematics does not consist only in deriving consequences
from axioms in a given Ianguag?
e It also consists in enlarging or changing the language in order to get new insights.

Striking examples:
e Descartes’ analytic geometry:

from the language of ancient geometry to algebra.
e Newton’s physics:
from the language of time series to differential calculus.
e Galois’ theory:
from the language of algebraic equations
to the language of symmetry groups and group actions.
Al problems as problems of language changes:
e LLM: coding texts as vectors
in a way which makes approximation techniques efficient.
e Image recognition: from pixels to words.
e Deep learning: moving from an input language to an output language
through mysterious intermediate layers.
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A key difficulty and an overlooked question:

The difficulty of jumps:

Usually, we don’t move from a language to another language
in a continuous way nor even through easy intermediate steps.

Ex: Descartes, Newton, Galois made genius jumps.
Consequence:

DNN systems which would be “meaningful” are hard to imagine.

— Maybe intermediate languages between

an input language and an output language do not exist?

— Maybe an approximation process

such as gradient descent backward propagation cannot be meaningful?

The overlooked question of choosing a starting description language:

Ex: The language of pixels for representing images should be open to question.

— For instance, could images be represented in terms of more or less
precise qualitative descriptions of distinguishable contours
and the connected components of their complement?
Grothendieck toposes June 3-4, 2024 3/16




The necessity of formalized languages and their elements:

If we want machines to deal with some languages,
they have to be formalized languages, i.e. the type of languages used in mathematics.
Elements of mathematical languages:
e Vocabulary:
— names of “objects” i.e. of “spaces of variables” G, F, V, A, B, - - -
— names of maps in a family of variables f: A --- A, — B
— names of relations in a family of variables R — A; --- A,

e Substitution: )
— replacing a variable x5 by a function f(x{" - - - x;")

e Logical symbols allowing to form first-order formulas:
— truth, finite and infinite conjunctions T, A\, A

— false, finite and infinite disjunctions L, V/,\/

— negation —

— implication =

— existential and universal quantifiers 3,V

e Formation of quotients by equivalence relations.

e Second-order constructions: (A, B) — B* = Hom(A, B)
A— P(A) =04
e Interpretations: They always exist in Set and, more generally, in any topos &.
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Geometrization of logic:

Theorem (dating back to the 1970’s). — For any first-order theory T wich is “geometric”
(meaning its axioms only use the symbols T,/ L,\/,3),

there exists an associated “topos” (= generalized space) Er

such that
interpretations = “models” “topos morphisms”
{ M } — { (= generalized continuous maps) }
of T in a topos £ E—é&r
change of parameters composition with topos morphisms
{ for models } — f:& =€
Min&w— FMiné&’

E—oé&n)m (& Des e
Interprezatjl‘?n 01; iﬂf;)rmula L { embedding in £ }
O X ..
in a model M of T in & Mo = MA - x MAy

Remarks:

e In particular, set-valued models M of T

correspond to “points”: point topos Pt = {topos of sets} — &r.

e For any model M of T in £, any geometric formula ¢, and any f: £’ — &,
*(Mo) — (FM)e.

e For more general formulas, there is only a natural morphism in £

f*(Me) — (fF"M)e.
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Semantics and geometry:

Definition (originately introduced by Tarski). —

The semantics of a theory T (considered as a syntactic object)
consists in its “models” in {sets}

(and, more generally, in an arbitrary topos & ).

Corollary. — For any first-order geometry theory T,
its semantics is incarnated
by its associated topos Er.

Remarks:
e In particular, two theories T and T’ are semantically equivalent if and only if
Er =&

e A geometric theory T is contradictory if and only if
Er=10.

A miracle of Topos Theory:
The semantics of any first-order geometric theory T
is incarnated by a well-defined mathematical object Er

which is of topological nature and is amenable to computation.
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Back from semantics to syntax:

Theorem. — Any topos morphism f : £’ — £ uniquely factorizes as

&' —— > Im(f)

“surjective” embedding

Remarks:
¢ As a consequence, there is a well-defined push-forward map
f. : {subtoposes &/ — £’} — {subtoposes & — £},
(] ) s Im(El — &' L&)
e One can prove that there exists also a pull-back map
f. = f~' : {subtoposes & — £} — {subtoposes & — £’}
(& = &) (F1& = &)
characterized by EDR(EN S & DE.

Theorem (O. Caramello). — For any geometric theory T, subtoposes €& — Er
correspond to “quotient” theories T' derived from T by adding extra axioms.

Consequence: For any model M of T in a topos &, corresponding to £ -2 &,
Im(m) — &r corresponds to a quotient theory T’

which can be called a syntactic description of M.
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How to represent natural families of data?
o If we want to process natural families of data (ex: images),

we first need to figure out
to which type of mathematics objects they should correspond.

¢ On the basis of classical practice,
the first idea would be to represent data as points of some spaces,

in particular as vectors of some (high dim.) linear spaces.
Objection:
If we think in the more general terms of toposes,

points Pt— & or & —¢&r
correspond to “models” of geometric theories T.

They are of semantic nature, whereas stored data should be syntactic.
Proposed alternative:
Represent natural families of data

as families of subtoposes of a given topos.
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Reasons for representing data as subtoposes:

First reason: syntactic expression. —
For any equivalence £ = &r, the purely geometric notion of subtopos £y — &
corresponds one-to-one to the purely syntactic notion of “quotient” theory T of T.

Second reason: topological expression. —

The notion of subtopos has other expressions.

For any equivalence £ = C, = topos of “ sheaves”

on a small category C endowed with a “topology” J,

subtoposes & — & correspond one-to-one to “topologies” J1 on C which refine J.

Third reason: amenability to geometric processing. —
Any “geometric” correspondence between toposes

transforms subtoposes & — &,
into subtoposes  q.(p~'&) < En, .
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A possible general form of topos-theoretic deep learning:

Any chain of correspondences

/\ /\

T1 ng 1

induces a processmg machine
{subtoposes} {subtoposes} {subtoposes}
— — e

of 5’]1‘0 of 5’[[‘1 of 5’]1‘,7

or, equivalently

quotient quotient quotient

theories — theories — e theories

of To of Ty of Tp,

Remark:
e In such a scheme, the bottom line &r,, &y, - -+, &,
should be understood syntactically
while the upper line &r,, - - -, &, should be understood semantically:

each &, carries simultaneously two model structures of Ty_; and T;.
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Fundamental questions:

First question: the starting description language
How to choose a starting description theory Ty

for the family of data under consideration?

Remark:
If the data in such a natural family are to be represented as subtoposes of &,

To should not be a “theory of this type of data”

but a “theory of viewpoints” on this type of data.

Second question: geometric language elaboration
How to elaborate from an already constructed description language T;

a deeper (or better fitted for our objectives) description language T;, 1

related to T; through a double intertwined model structure:
Er.

i

5Ti71 ET/‘
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Tying series of data through a joint description vocabulary:

Basic facts relating formalized languages and geometry. —
(1) Any first-order geometric theory T consists in

a vocabulary ¥ and a family of axioms @(x{",--- | xp") Fb(x(", -, xp).
(2) Any vocabulary ¥ defines a “category” (= “mathematical country”
consisting in: cities + itineraries + composition law of itineraries)
Cz whose ‘cities” and ‘itineraries” are
“formulas” (= sentences in the vocabulary T).
(3) This category Cs defines the topos £s = Csx.
(4) Choosing axioms to define T from X is equivalent to

—  choosing a subtopos Er < Es = Cs,
— choosing a “topology” Jr on the “category”Cs .

Suppose we want to introduce a starting description vocabulary o
for a natural family of data (ex. images, plane configurations, algebraic equations, - - -)
— Start with a family of concrete instances i € /, each represented by a description
vocabulary V; supplemented by conditions expressed in this vocabulary.
— The fact that all i € I belong to a natural family should allow to choose a
“joint description vocabulary” X, endowed with “naming functors”
CV,- —)C[O, Viel.
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A principle for inductive reasoning and syntactic learning:
e Suppose we are given a series of concrete instances i € / of a natural family of data.

e Suppose each instance i € | is described by conditions expressed in a vocabulary V;,
which can equivalently be thought of as

— atopology J;on Cy,,
{— a subtopos (/CﬁJi — C/\Z =C&y,.

e Suppose the instances i € I are related by
a “joint description vocabulary” £, and naming functors

Cv, —Cxy, €,
inducing topos morphisms €y, = Cy, —— Cx,, i € I.
Principle of inductive reasoning:

The starting description theory Ty in the vocabulary X,
should be “as economical as possible” under the constraint that

for any i € 1, the pull-back map e; ' by C/\Z N 5;
should verify €' (&r, < Cx,) C ((cy), = Cy)

Remark: Pull-back maps always respect finite unions.
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A principle for elaborating chains of “higher” description languages:

Question: If a “description language” T; is already constructed, how to derive from T;
“higher description languages” T;. 1 related to T; by geometric correspondences:
Er,

i

N

571’/ 1
Remark: It may happen that p;, g; or both are equivalences.
Even that case can be very deep.
Proposed process:
— Consider different models TI; of T; in toposes Er,,

or equivalently different topos morphisms Er, LN ;.
— Consider higher order constructions built from T; in Er,

(e.g. symmetry groups or, more generally, global invariants).
— Recognize that these higher-order constructions

are models of some other first-order geometric theory T; 4.

— Choose the model &r, R &r; and the higher-order construction

Er,

i

so that the induced correspondence £, L Er, - &r,,, is best fitted.
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Examples:

e Descartes’ equivalence:
Start with the theory T of affine planes.

Consider its “universal model” U in &r.
Consider the associated groups of “translations” and “dilatations” of U

and the associated field structure on lines endowed with two points.
— This induces an equivalence Er=&r if T’/ =theory of fields.

o Differential calculus:
Start with a theory T of numbers. Consider a “complete” model R : &g — &Er.

Construct in &g the inner space of functions Hom(R, R)

and define subspaces of “differentiable” and “integrable” functions,
yielding a topos morphism Egiir — Er.
Derive the algebraic rules of differential calculus

(linearity, Leibnitz’ rule, integration of derivatives, change of variables)
defining a theory T’ endowed with a model structure Eaitt — E17 .
Grothendieck toposes June 3-4, 2024 15/16




Examples:
o Galois’ equivalence:
Start with the theory T of algebraic extensions of fields,
endowed with  &r — & for B = theory of fields.
Consider any model k : Pt — &g, i.e. any field k, and the fiber product of toposes

Ery —=¢&r
i l where Ty = theory of algebraic extensions of k.

Pt —— &

Choose a separable closure k of k, considered as a point k:Pt— &r, .

Consider the associated group G of symmetries of k : Pt — &r,
and the associated theory T of principal G-actions, yielding a topos embedding
Erg — Ery . -

¢ An automatic system for analyzing time series

inspired by O. Caramello’s topos-theoretic ideas:

Starting with a theory T, of “viewpoints” on some type of time series,

a software company has constructed a chain of theories Ty, -+, T,

where each T; is a theory of “higher order viewpoints” on T;_;.
Remark: So far, the length of the chain is already n > 10.
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