Grothendieck toposes and the geometry of language elaborations

Laurent Lafforgue

(Lagrange Center and Huawei Boulogne-Billancourt Research Center, France)

London CSTT Workshop, British Library, June 3-4, 2024

Note: this presentation has been largely inspired by exchanges with O. Caramello.

The core question of language elaboration:

Starting remarks:

- Mathematics does not consist only in deriving consequences from axioms in a given language.
- It also consists in enlarging or changing the language in order to get new insights.

Striking examples:

• Descartes' analytic geometry:

from the language of ancient geometry to algebra.

• Newton's physics:

from the language of time series to differential calculus.

• Galois' theory:

from the language of algebraic equations

to the language of symmetry groups and group actions.

AI problems as problems of language changes:

• LLM: coding texts as vectors

in a way which makes approximation techniques efficient.

- Image recognition: from pixels to words.
- Deep learning: moving from an input language to an output language

through mysterious intermediate layers.

A key difficulty and an overlooked question:

The difficulty of jumps:

Usually, we don't move from a language to another language

in a continuous way nor even through easy intermediate steps.

Ex: Descartes, Newton, Galois made genius jumps.

Consequence:

DNN systems which would be "meaningful" are hard to imagine.

 \rightarrow Maybe intermediate languages between

an input language and an output language do not exist?

 \rightarrow Maybe an approximation process

such as gradient descent backward propagation cannot be meaningful?

The overlooked question of choosing a starting description language:

Ex: The language of pixels for representing images should be open to question.

 \rightarrow For instance, could images be represented in terms of more or less precise qualitative descriptions of distinguishable contours

and the connected components of their complement?

The necessity of formalized languages and their elements:

If we want machines to deal with some languages,

they have to be formalized languages, i.e. the type of languages used in mathematics.

Elements of mathematical languages:

- Vocabulary:
- $\sqrt{ }$ − names of "objects" i.e. of "spaces of variables" *G*, *F*, *V*, *A*, *B*, · · ·
- $\frac{1}{2}$
	- − names of maps in a family of variables *f* : *A*₁ · · · *A_n* → *B*
− names of relations in a family of variables $R \rightarrowtail A_1 \cdots A_n$
- Substitution:

 \mathcal{L}

- $-\overline{\mathsf{replacing\ a\ variable\ } x^B}$ by a function $f(x_1^{A_1}\cdots x_n^{A_n})$
- Logical symbols allowing to form first-order formulas:
- $-$ truth, finite and infinite conjunctions \top, \wedge, \bigwedge
- $-$ false, finite and infinite disjunctions \bot, \vee, \bigvee
- − negation ¬
- [−] implication [⇒]
- − existential and universal quantifiers ∃, ∀
- Formation of quotients by equivalence relations.
- Second-order constructions: $(A, B) \longmapsto B^A = \mathcal{H} \text{om}(A, B)$ $A \longmapsto \mathcal{P}(A) = \Omega^A$
- Interpretations: They always exist in Set and, more generally, in any topos \mathcal{E} .

Geometrization of logic:

Theorem (dating back to the 1970's). – *For any first-order theory* T *wich is "geometric" (meaning its axioms only use the symbols* ⊤, ∧, ⊥, W , ∃*), there exists an associated "topos"* (= *generalized space*) ε_{T} such that *interpretations* = *"models"* \int \mathfrak{t} *M of* $\mathbb T$ *in a topos* $\mathcal E$ \mathcal{L} J ←→ $\sqrt{ }$ \int \mathfrak{t} *"topos morphisms"* (= *generalized continuous maps*) $\mathcal{E} \rightarrow \mathcal{E}_{\mathbb{T}}$ \mathcal{L} \mathcal{L} J $\sqrt{ }$ *change of parameters* \mathcal{L} *for models M* in $\mathcal{E} \mapsto f^*M$ in \mathcal{E}' \int \mathcal{L} \cdot (←→ *composition with topos morphisms* \int $\overline{\mathcal{L}}$ $f : \mathcal{E}' \to \mathcal{E}$ $(\mathcal{E} \to \mathcal{E}_{\mathbb{T}}) \mapsto (\mathcal{E}' \xrightarrow{f} \mathcal{E} \to \mathcal{E}_{\mathbb{T}})$ $\overline{\mathcal{L}}$ \int *interpretation of a formula* $\frac{1}{2}$ \mathcal{L} $\frac{\varphi(x_1^{A_1} \cdots x_n^{A_n})}{\varphi(x_1^{A_1} \cdots x_n^{A_n})}$ *in a model M of* $\mathbb T$ *in* $\mathcal E$ $\left\{\n\begin{array}{ccc}\n\longleftarrow & \left\{\n\begin{array}{c}\n\text{embedding in } \mathcal{E} \\
M\varphi & \rightarrow MA_1 \times \cdots \times\n\end{array}\n\end{array}\n\right\}$ $M\varphi \hookrightarrow MA_1 \times \cdots \times MA_n$ \mathcal{L}

Remarks:

• In particular, set-valued models M of T

correspond to "points": point topos Pt = {topos of sets} $\rightarrow \mathcal{E}_{\mathbb{T}}$.

• For <u>any model</u> *M* of $\mathbb T$ in $\mathcal E$, any geometric formula φ , and <u>any</u> $f : \mathcal E' \to \mathcal E$,

$$
f^*(M\phi)\overset{\sim}{\longrightarrow}(f^*M)\phi\ .
$$

 $f^*(M\varphi) \stackrel{\sim}{\longrightarrow} (f^*M)\varphi$.
► For more general formulas, there is only a natural morphism in $\mathcal E$

$f^*(M\varphi) \longrightarrow (f^*M)\varphi$.	June 3-4, 2024	5/16	
L. Lafforgue	Grothendieck toposes	June 3-4, 2024	5/16

Semantics and geometry:

Definition (originately introduced by Tarski). –

The semantics of a theory T *(considered as a syntactic object) consists in its "models" in* {*sets*} *(and, more generally, in an arbitrary topos* E*).*

Corollary. – *For any first-order geometry theory* T*, its semantics is incarnated by its associated topos* \mathcal{E}_T *.*

Remarks:

 \bullet In particular, two theories $\mathbb T$ and $\mathbb T'$ are semantically equivalent if and only if

 $\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}_{\mathbb{T}'}$.

• A geometric theory $\mathbb T$ is contradictory if and only if $\mathcal{E}_{\mathbb{T}} = \emptyset$

A miracle of Topos Theory:

The semantics of any first-order geometric theory $\mathbb T$

is incarnated by a well-defined mathematical object $\mathcal{E}_{\mathbb{T}}$

which is of topological nature and is amenable to computation.

Back from semantics to syntax:

Theorem. – Any topos morphism
$$
f : \mathcal{E}' \to \mathcal{E}
$$
 uniquely factorizes as

$$
\mathcal{E}' \xrightarrow{\quad \text{``surjective''\quad \text{Im}(f) \xrightarrow{\quad \text{embedding}} \mathcal{E}.
$$

Remarks:

• As a consequence, there is a well-defined push-forward map

$$
f_*: \{\text{subtoposes } \mathcal{E}_1' \hookrightarrow \mathcal{E}'\} \to \{\text{subtoposes } \mathcal{E}_1 \hookrightarrow \mathcal{E}\},
$$

$$
(\mathcal{E}'_1 \hookrightarrow \mathcal{E}') \mapsto \operatorname{Im}(\mathcal{E}'_1 \hookrightarrow \mathcal{E}' \xrightarrow{f} \mathcal{E}).
$$

 $(\mathcal{E}_1' \hookrightarrow \mathcal{E}') \mapsto \text{Im}(\mathcal{E}_1' \hookrightarrow \mathcal{E}' -$
• One can prove that there exists also a pull-back map

$$
f_* = f^{-1} : \{ \text{subtoposes } \mathcal{E}_1 \hookrightarrow \mathcal{E} \} \to \{ \text{subtopposes } \mathcal{E}_1' \hookrightarrow \mathcal{E}' \} (\mathcal{E}_1 \hookrightarrow \mathcal{E}) \mapsto (f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}')
$$

characterized by f_1') \Leftrightarrow $f^{-1}\mathcal{E}_1 \supseteq \mathcal{E}_1'$.

Theorem (O. Caramello). – For any geometric theory \mathbb{T} , subtoposes $\mathcal{E} \hookrightarrow \mathcal{E}_{\mathbb{T}}$ *correspond to "quotient" theories* \mathbb{T}' *derived from* \mathbb{T} *by adding extra axioms.*

Consequence: For any model M of $\mathbb T$ in a topos $\mathcal E$, corresponding to $\mathcal E \stackrel{m}{\longrightarrow} \mathcal E_{\mathbb T},$

 ${\rm Im}(m)\hookrightarrow {\mathcal E}_{{\mathbb T}}$ corresponds to a <u>quotient theory</u> ${\mathbb T}'$

which can be called a syntactic description of *M*.

How to represent natural families of data?

• If we want to process natural families of data (ex: images), we first need to figure out

to which type of mathematics objects they should correspond.

• On the basis of classical practice,

the first idea would be to represent data as points of some spaces,

in particular as vectors of some (high dim.) linear spaces.

Objection:

If we think in the more general terms of toposes,

points Pt \longrightarrow $\mathcal{E}_{\mathbb{T}}$ or $\mathcal{E} \longrightarrow \mathcal{E}_{\mathbb{T}}$

correspond to "models" of geometric theories T.

They are of semantic nature, whereas stored data should be syntactic.

Proposed alternative:

Represent natural families of data

as families of subtoposes of a given topos.

Reasons for representing data as subtoposes:

First reason: syntactic expression. –

For any equivalence $\mathcal{E} \cong \mathcal{E}_T$, the purely geometric notion of subtopos $\mathcal{E}_1 \hookrightarrow \mathcal{E}$ *corresponds one-to-one to the purely syntactic notion of "quotient" theory* \mathbb{T}_1 *of* \mathbb{T}_1 *.*

Second reason: topological expression. –

The notion of subtopos has other expressions.

For any equivalence $\mathcal{E} \cong \widehat{\mathcal{C}}_J$ = *topos of " sheaves"*

on a small category C *endowed with a " topology" J,* $subtoposes \mathcal{E}_1 \hookrightarrow \mathcal{E}$ *correspond one-to-one to " topologies" J₁ on C which refine J.*

Third reason: amenability to geometric processing. –

Any "geometric" correspondence between toposes

A possible general form of topos-theoretic deep learning:

Fundamental questions:

First question: the starting description language

How to choose a starting description theory \mathbb{T}_0

for the family of data under consideration?

Remark:

If the data in such a natural family are to be represented as subtoposes of $\mathcal{E}_{\mathbb{T}_0},$

 \mathbb{T}_0 should not be a "theory of this type of data"

but a "theory of viewpoints" on this type of data.

Second question: geometric language elaboration

How to elaborate from an already constructed description language T*ⁱ*

a deeper (or better fitted for our objectives) description language \mathbb{T}_{i+1}

related to \mathbb{T}_i through a double intertwined model structure:

Tying series of data through a joint description vocabulary:

Basic facts relating formalized languages and geometry. – *(1) Any first-order geometric theory* T *consists in* a *vocabulary* Σ *and a family of axioms* $\varphi(x_1^{A_1}, \dots, x_n^{A_n}) \vdash \psi(x_1^{A_1}, \dots, x_n^{A_n})$ *. (2) Any vocabulary* Σ *defines a "category" (*= *"mathematical country" consisting in: cities* + *itineraries* + *composition law of itineraries)* C^Σ *whose "cities" and "itineraries" are "formulas" (*= *sentences in the vocabulary* Σ*). (3) This category* C_{Σ} *defines the topos* $\mathcal{E}_{\Sigma} = \widetilde{C}_{\Sigma}$. *(4) Choosing axioms to define* T *from* Σ *is equivalent to* $\sqrt{ }$ *choosing a subtopos* $\mathcal{E}_{\mathbb{T}} \hookrightarrow \mathcal{E}_{\Sigma} = \widehat{\mathcal{C}}_{\Sigma}$, *choosing a "topology" J_T on the "category"* C_{Σ} .

Suppose we want to introduce a starting description vocabulary Σ_0 for a natural family of data (ex. images, plane configurations, algebraic equations, \cdots) \rightarrow Start with a family of concrete instances *i* \in *l*, each represented by a description vocabulary *Vⁱ* supplemented by conditions expressed in this vocabulary. [→] The fact that all *ⁱ* [∈] *^I* belong to a natural family should allow to choose a "joint description vocabulary" Σ_0 endowed with "naming functors" $\mathcal{C}_{V_i} \longrightarrow \mathcal{C}_{\Sigma_0}$, $\forall i \in I$.

L. Lafforgue [Grothendieck toposes](#page-0-0) June 3-4, 2024 12 / 16

A principle for inductive reasoning and syntactic learning:

- Suppose we are given a series of concrete instances *i* ∈ *I* of a natural family of data.
- Suppose each instance *i* ∈ *I* is described by conditions expressed in a vocabulary *Vi*, which can equivalently be thought of as

$$
\int - a \underline{\text{topology}} J_i \text{ on } \mathcal{C}_{V_i},
$$

$$
- \quad \text{a} \; \overline{\text{subtops}} \quad \widehat{(\mathcal{C}_{V_i})}_{J_i} \hookrightarrow \widehat{\mathcal{C}_{V_i}} = \mathcal{E}_{V_i}.
$$

- Suppose the instances *i* ∈ *I* are related by
- a "joint description vocabulary" Σ_0 and naming functors

$$
\mathcal{C}_{V_i} \longrightarrow \mathcal{C}_{\Sigma_0}, \quad i \in I,
$$

inducing <u>topos morphisms</u> $\mathcal{E}_{V_i} = \widehat{\mathcal{C}_{V_i}} \xrightarrow{e_i} \widehat{\mathcal{C}_{\Sigma_0}}, i \in I$.

Principle of inductive reasoning:

The starting description theory \mathbb{T}_0 in the vocabulary Σ_0 should be "as economical as possible" under the constraint that

for any
$$
i \in I
$$
, the pull-back map e_i^{-1} by $\widehat{C}_{V_i} \xrightarrow{e_i} \widehat{C}_{\Sigma_0}$,
should verify $e_i^{-1}(\mathcal{E}_{\mathbb{T}_0} \hookrightarrow \widehat{C}_{\Sigma_0}) \subseteq ((\widehat{C}_{V_i})_{J_i} \hookrightarrow \widehat{C}_{V_i})$

Remark: Pull-back maps always respect finite unions.

 $\sqrt{ }$

A principle for elaborating chains of "higher" description languages:

Question: If a "description language" \mathbb{T}_i is already constructed, how to **derive** from \mathbb{T}_i "higher description languages" \mathbb{T}_{i+1} related to \mathbb{T}_i by geometric correspondences:

Remark: It may happen that *pi*, *qⁱ* or both are equivalences.

Even that case can be very deep.

Proposed process:

- → Consider <u>different models</u> Γ_{*i*} of \mathbb{T}_i in toposes \mathcal{E}_{Γ_i} , or equivalently different topos morphisms $\mathcal{E}_{\Gamma_i} \xrightarrow{p_i} \mathcal{E}_{\mathbb{T}_i}$.
- [→] Consider higher order constructions built from ^Γ*ⁱ* in E^Γ*ⁱ*
	- (e.g. symmetry groups or, more generally, global invariants).
- \rightarrow Recognize that these higher-order constructions are models of some other first-order geometric theory \mathbb{T}_{i+1} .
- \rightarrow Choose the model \mathcal{E}_{Γ_i} $\stackrel{p_i}{\rightarrow}$ $\mathcal{E}_{\mathbb{T}_i}$ and the higher-order construction

so that the <u>induced correspondence</u> $\mathcal{E}_{\mathbb{T}_i} \xleftarrow{\rho_i} \mathcal{E}_{\Gamma_i} \xrightarrow{q_i} \mathcal{E}_{\mathbb{T}_{i+1}}$ is <u>best fitted</u>.

Examples:

• **Descartes' equivalence:**

Start with the theory $\mathbb T$ of affine planes.

Consider its "universal model" U in $\mathcal{E}_{\mathbb{T}}$.

Consider the associated groups of "translations" and "dilatations" of *U* and the associated field structure on lines endowed with two points.

→ This induces an equivalence $\mathcal{E}_{\mathbb{T}} \cong \mathcal{E}_{\mathbb{T}'}$ if $\mathbb{T}' = \underline{\text{theory of fields}}$.

• **Differential calculus:**

Start with a theory T of numbers. Consider a "complete" model $\mathbb{R}: \mathcal{E}_{\mathbb{R}} \to \mathcal{E}_{\mathbb{T}}$. Construct in $\mathcal{E}_{\mathbb{R}}$ the inner space of functions \mathcal{H} *om*(\mathbb{R}, \mathbb{R}) and define subspaces of "differentiable" and "integrable" functions, yielding a topos morphism $\mathcal{E}_{diff} \rightarrow \mathcal{E}_{\mathbb{R}}$. Derive the algebraic rules of differential calculus (linearity, Leibnitz' rule, integration of derivatives, change of variables) defining a <u>theory</u> \mathbb{T}' endowed with a <u>model structure</u> $\mathcal{E}_{\text{diff}} \longrightarrow \mathcal{E}_{\mathbb{T}'}$.

Examples:

• **Galois' equivalence:**

Start with the theory $\mathbb T$ of algebraic extensions of fields, endowed with $\mathcal{E}_{\mathbb{T}} \to \mathcal{E}_{\mathbb{B}}$ for $\mathbb{B} =$ theory of fields.

Consider any model $k : Pt \to \mathcal{E}_\mathbb{B}$, i.e. any field k , and the fiber product of toposes

 $\mathcal{E}_{\mathbb{T}_k} \longrightarrow \mathcal{E}_{\mathbb{T}}$ ľ. where $\mathbb{T}_k =$ theory of algebraic extensions of k . ŗ Pt $\xrightarrow{k} \mathcal{E}_{\mathbb{B}}$

Choose a separable closure *k* of *k*, considered as a point *k* : Pt → $\varepsilon_{\mathbb{T}_k}$. Consider the associated group *G* of symmetries of $\overline{k}:$ Pt \rightarrow $\mathcal{E}_{\mathbb{T}_k}$ and the associated theory \mathbb{T}_G of principal *G*-actions, yielding a topos embedding $\mathcal{E}_{\mathbb{T}_G} \hookrightarrow \mathcal{E}_{\mathbb{T}_k}$.

• **An automatic system for analyzing time series inspired by O. Caramello's topos-theoretic ideas:** Starting with a theory \mathbb{T}_0 of "viewpoints" on some type of time series, a software company has constructed a chain of theories $\mathbb{T}_1, \cdots, \mathbb{T}_n$ where each T*ⁱ* is a theory of "higher order viewpoints" on T*i*−1. **Remark:** So far, the length of the chain is already $n > 10$.