Grothendieck toposes as mathematics for future AI: illustration by the problem of image representation

Laurent Lafforgue

(Huawei Paris Research Center, Boulogne-Billancourt, France)

Workshop on Mathematical Information Science

Centre Lagrange, Paris, Friday October 13th, 2023

The problem of representing images as mathematical objects:

• Any computer storage or processing of images is necessarily based on a mathematical model

of the nature of images.

Classically,

an <u>image</u> is a <u>collection of "pixels"</u> (= <u>measures</u> of intensity of light) indexed by a <u>finite set</u> of <u>plane points</u> consisting in pairs of coordinates.

• The implicit mathematical model:

_	image	=	numerical function(s)
			defined on a plane area,
_	plane area	=	continuous set of points
			which can be discretized,
_	plane point	=	pair of <u>coordinates</u> .

Objections to the classical mathematical model of images:

- For our <u>mind</u>, an <u>image</u> is <u>not at all</u> a <u>numerical function</u>:
 - Intensity of light is not perceived in <u>numerical terms</u>.
 - A plane area <u>does not consist</u> in points.
 - In fact, we see plane areas but we never see points.
 In our perception, points do not exist.
 - Our mind doesn't perceive coordinates: space and images are perceived in a much more vague way.

The double human expression of mind images:

- On the one hand, art representations: drawings, colored drawings, paintings, <u>sketches</u>, <u>schemes</u>, ····
- On the other hand, <u>linguistic descriptions</u>: <u>describing a landscape or any type of environment with words</u>, <u>even telling a story</u>,

any piece of litterature any type of writing any type of speech

always describes a mind image.

• The basic diagram of mind images and their expressions:

A mathematical model of mind images and their expressions:

sites, Grothendieck toposes, theories

• A mathematical model for art representations: sites

A Grothendieck topology J on a category C consists in a <u>building principle</u> which allows to <u>reconstruct</u> "<u>more complex pieces</u>" A from related <u>"simpler" pieces</u> $A_i \rightarrow A$.

- A Grothendieck topos \mathcal{E} is a category which, in a perfectly precise sense, is fully complete.
- Toposes as completions of categories:
 A topology J on a category C defines a topos completion

$$\mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J$$
 (so that $J =$ extrapolation principle).

A mathematical model for texts: theories A "first-order geometric" theory consists in $\begin{cases} - a \text{ vocabulary,} \\ - a \text{ grammar rules.} \end{cases}$ Elements of vocabulary are piece or location names, itinerary names

 itinerary names
 (associated with a pair of piece names),
 relation names

 (associated with a finite family of piece names). Grammar rules take the form of implications $\phi \vdash \psi$ between "geometric" formulas φ, ψ, \cdots = "sentences" in the given vocabulary and the logical symbols \top , \land , \bot , \lor , \exists . • Any such theory \mathbb{T} defines a "syntactic" site $(\mathcal{C}_{\mathbb{T}}, \mathcal{J}_{\mathbb{T}})$: pieces of $\overline{\mathcal{C}_{\mathbb{T}}}$ = formulas φ = sentences in the vocabulary of \mathbb{T} , itineraries of $C_{\mathbb{T}}$ = implications $\varphi \vdash \psi$ which are provable from the grammar rules, topology of $\mathcal{C}_{\mathbb{T}}$ = principle for reducing a proof to a combination of local proofs.

• There is an associated "classifying" topos $\mathcal{E}_{\mathbb{T}} = (\mathcal{C}_{\mathbb{T}})_{J_{\mathbb{T}}}$.

• A mathematical model for the double expressions of mind images:

A <u>mathematical model</u> of

 $\frac{\text{drawings}}{\text{schemes}} \left\{ \xrightarrow{\text{sketching}} \underbrace{\text{mind images}}_{\substack{\text{extrapolation}\\ (\text{based on interpretation})}} \underbrace{\text{mind images}}_{\substack{\text{mind images}}} \right\}$ $\frac{\text{sites}\left(\mathcal{C}, J\right)}{\underbrace{\text{sketching}}_{\substack{\text{completion}\\ \mathcal{C} \to \widehat{\mathcal{C}}_J = \mathcal{E}}} \underbrace{\text{toposes}}_{\substack{\text{toposes}\\ \mathcal{E}}} \mathcal{E}$ $(\text{based on } J = \text{topology} = \text{extrapolation principle on } \mathcal{C})$

is:

Grothendieck toposes for AI

Sketching of images, naming functors and interpretation topologies:

 What we need for a point-free (i.e. pixel-free) topos-inspired representation of images is:

> A general theory of images \mathbb{T} which is rich enough, so that any natural image (usually of a 3-dim object or environment) can be sketched as a (usually finite) category

C consisting in $\begin{cases} \frac{\text{pieces}}{\text{relations}} \\ \text{relations} \end{cases}$ (e.g. position relations),

endowed with a "naming functor"

 $N: \mathcal{C} \longrightarrow \mathcal{C}_{\mathbb{T}}$,

pieces A, B, \cdots \mapsto appropriate <u>names</u> or description sentences,

 $(A \rightarrow B) \longrightarrow$ implications provable from the grammar rules of \mathbb{T} .

• Then the "naming functor" N would induce from $J_{\mathbb{T}}$ = topology of $\mathcal{C}_{\mathbb{T}}$ a canonical topology J = "extrapolation principle" of Ccharacterized by a square of itineraries of toposes:

General theory and singular descriptions:

- Suppose that

 $\begin{cases} - & \text{we have defined a rich enough theory of images} \\ - & a \text{ natural image is sketched as a category } \mathcal{C} \\ & \text{endowed with a "naming functor"} \quad N : \mathcal{C} \longrightarrow \mathcal{C}_{\mathbb{T}} , \end{cases}$

inducing

- $\begin{cases} \text{ an "interpretation topology" } J \text{ on } \mathcal{C}, \\ \text{ an itinerary of toposes } \widehat{\mathcal{C}}_J \xrightarrow{N_*} \mathcal{E}_{\mathbb{T}}. \end{cases}$
- Then:
 - there is a <u>canonical factorization</u> of the itinerary N_{*}

$$\widehat{\mathcal{C}}_{J} \xrightarrow{\qquad} \operatorname{Surjective} \operatorname{Surjective} \operatorname{Im}(N_{*}) \xrightarrow{\qquad} \operatorname{Em}(N_{*}) \xrightarrow{\qquad} \operatorname{Em}(N_{*}) \xrightarrow{\qquad} \operatorname{Surjective} \operatorname{Surjective}$$

- the subtopos $\operatorname{Im}(N_*) \hookrightarrow \mathcal{E}_{\mathbb{T}}$ is the "classifying topos" of a theory \mathbb{T}' consisting in $\begin{cases} \text{the same vocabulary as } \mathbb{T}, \\ \text{more "grammar rules",} \end{cases}$ which can be considered a specific description
 - of the particular image we are considering.

Constructing spaces of image descriptions?

• Is it possible to parametrize image descriptions by points of some space?

Key remark: Such a space should have a <u>continuous structure</u> as, for us, natural images move and transform.

 If T is a "theory of images", rich enough to describe natural images, the problem becomes:

Question. -

(1) <u>Naive form</u>: Is there a "space" whose points parametrize subtoposes of $\mathcal{E}_{\mathbb{T}}$?

(2) More precise unambiguous well-posed form: Is there a topos \mathcal{J} such that, for any topos \mathcal{E} , <u>subtoposes</u> of the product topos $\mathcal{E} \times \mathcal{E}_{\mathbb{T}}$ <u>correspond to</u> <u>topos itineraries $\mathcal{E} \to \mathcal{J}$?</u>

Deep learning as a relativization process?

• Suppose that we have defined a "theory of images" T rich enough to allow representing natural images by categories C endowed with a "naming functor"

$$N: \mathcal{C} \longrightarrow \mathcal{C}_{\mathbb{T}}$$

inducing a topos itinerary

$$\widehat{\mathcal{C}}_J \longrightarrow \mathcal{E}_{\mathbb{T}}$$
.

• A process of information extraction could be constructed as a sequence of surjective topos itineraries $\mathcal{E}_{\mathbb{T}} = \overline{\mathcal{E}_0 \twoheadrightarrow \mathcal{E}_1 \twoheadrightarrow \cdots \twoheadrightarrow \mathcal{E}_k}$ whose steps $\mathcal{E}_i \twoheadrightarrow \mathcal{E}_{i+1}$ would gradually extract more and more <u>abstract information</u>.

General remarks. -

- (i) A topos \mathcal{E} endowed with a topos itinerary $\mathcal{E} \to \mathcal{B}$ is called a "relative topos" over the "base topos" \mathcal{B} .
- (ii) It can be presented as classifying "B-based theories" (= theories parametrized by points of B).
- (iii) If only for that reason, a topos itinerary $\mathcal{E} \to \mathcal{B}$ always has meaning.