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From meta-mathematics to mathematics?

The themes of our conference:

• “Learning over topological spaces”.
• “Semantic and goal-oriented communication”.

A striking common feature:
The words
− “learning”,
− “semantic” (in the sense of “conveying meaning”),
− “goal”,

make natural sense for human minds,
and in particular apply to the work of mathematicians,
but
they do not belong to classical mathematics,
they do not represent classical mathematical objects.

A derived necessary step before building a theory of “semantic information”:
Can meta-mathematical notions as “learning”, “semantic” or “goal”
be modellized inside mathematics?
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Syntax and semantics, according to Tarski:
Tarski has proposed precise formal definitions
for the words “syntax” and “semantics”:

Definition. –
(i) A mathematical syntax is a theory consisting in

• a vocabulary
− names of structures (e.g. group G),
− names of operation

(e.g. multiplication GG→ G, inverse G
(•)−1

−−−−→ G, unit element→ G),
− names of relations (e.g. order ≤ or equivalence ∼),

• a family of axioms phrased in the given vocabulary.

(ii) The semantics of a given theory T
consists in its (set-valued) “models” M, i.e.
− sets,
− maps,
− subsets,

named after the elements of vocabulary of T, verifying its axioms,
and related by the maps between these structures
which respect their inner operations and relations.
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Topossic semantics:
Basic fact about toposes as “pastiches” of the category of sets:
According to Grothendieck and Giraud,
toposes are categories which are just as good as Set:

• They have arbitrary products
∏
i∈I

Ei .

• They have arbitrary sums
∐
i∈I

Ei .

• Equalizers of pairs of arrows E
f
⇒
g

E ′ are well-defined {f = g} ↪→ E.

• Quotients E ↠ E ′ correspond one-to-one to equivalence relations ∼ ↪→ E × E.
• Relations R ↪→ E × E generate equivalence relations ∼ ↪→ E × E.
• · · ·

Consequences for any theory T:
(i) T has models in any topos E as well as in Set.
(ii) If T is first-order, its models in E make up a category T-mod (E).

(iii) If T is first-order and geometric, topos maps f : E ′ → E
induce “change of parameters” transforms of models

f ∗ : T-mod (E) → T-mod (E ′).
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Topossic incarnation of semantics:
Theorem (Grothendieck, Hakim, Lawvere, Joyal, Makkai, Reyes, · · · ). –
For any theory T which is first-order and geometric,
there exists a topos ET (unique up to equivalence) such that:
• For any topos E , there is a natural equivalence:

T-mod (E) ∼←− Geom (E , ET)
{E-valued T-models} = = {topos maps E → ET}

{E-parametrized T-models} = = {E-parametrized points of ET}

• For any topos map E ′ e−−→ E ,
the induced

“change of parameters” transform
e∗ : T-mod (E)→ T-mod (E ′)

 corresponds to

{
composition with e

(E m−→ ET) 7→ (E ′ e−→ E m−→ ET).

Remarks:
• Topological spaces X define toposes EX ,

and continuous maps X ′ x−→ X define topos maps EX ′ → EX .
• In particular, the one-point space {•} defines the topos Set,
and elements x ∈ X of topological spaces X define topos maps Set −→ EX .
• For this reason, a “point” of a topos E is by definition a topos map Set −→ E
and any topos map E ′ → E
is called a E ′-parametrized (generalized) point of E .
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Geometric expressions of the semantics of theories:
• On the one hand, models of first-order geometric theories T
correspond to points of the associated toposes ET.
• On the other hand, toposes E admit by definition
presentations as categories of set-valued sheaves E ∼= ĈJ
on small categories C endowed with Grothendieck topologies J.

Theorem (Grothendieck, SGA 4). –
Consider a presentation of a topos E ∼= ĈJ
by a small category C with well-defined
− finite products U1 × · · · × Un,

− equalizers eq (U
f
⇒
g

V ) = {f = g} ↪→ U.

Then points of E Set → E (or generalized points E ′ → E)
correspond to “functors” ρ : C → Set (or ρ : C → E ′)
which
- respect finite products and equalizers,

- transform J-covering families (Ui
ui−→ U)i∈I

into globally surjective (or globally epimorphic) families

(ρ(Ui)
ρ(ui)−−−→ ρ(U))i∈I in Set (or in E ′).
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Understanding Grothendieck’s theorem as an approximation theorem:
Let’s make explicit Grothendieck’s theorem in the particular case of topological spaces:
Particular case of the previous theorem. –
Let X be a topological space. Let C ⊆ CX be a set of open subsets of X such that{
− C is stable under finite intersection,
− C is “dense” i.e. any open subset of X is a union of elements of C.

Then points of EX
Set → EX (or generalized points EX ′ → EX )

correspond to maps
ρ : C → {subsets of {•}} (or ρ : C → {open subsets of X ′})

which
− respect finite intersections,
− transform covering families

into globally surjective families.
Example:
If X = R, one may take CX = {intervals ]m,M[, m,M ∈ Q}

for any dense subset Q ⊆ Q.⇒ A real number is a family of compatible answers to the questions:{
For any interval ]m,M[, m,M ∈ Q,
does it belong to this interval or not?
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Approximation and learning for the semantics of theories:
As consequences of Grothendieck’s theorem, one may state and propose:

Corollary. –
Consider presentations E ∼= ĈJ of a given topos E .
Then functors ρ : C → Set (or ρ : C → E ′) which{
− respect finite products and equalizers,
− transform J-covering families into globally surjective families

do not depend on the choice of (C, J).

Definition. – An approximation of a point Set → E or E ′ → E
seen as such a functor ρ : C → Set or ρ : C → E ′

is defined as the restriction of ρ to a finite subdiagram D of C.

Remarks:
• Replacing D by a bigger finite diagram D ′ represents “learning”.
• The “goal” of the learning process is the full ρ : C → Set or ρ : C → E ′.

It is an ideal goal which, in general, cannot be reached.
• If E ∼= ET and T has a finite vocabulary,

one may choose finite subdiagrams D ↪→ C
such as the functors ρ are fully determined by their restrictions to D.
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When can a point be considered concrete?

The notion of point of a topos E
(or even of a topological space X , or even of X = R)
is abstract and ideal: only very particular points can be made fully explicit!

Proposed definition of concreteness. –
Consider a topos E presented as E ∼= ĈJ .
Then a point Set → E (or E ′ → E) seen as a functor

ρ : C → Set (or ρ : C → E ′)
can be called “C-concrete” if:
(1) The functor ρ is uniquely determined by its restriction ρD

to a finite subdiagram D ↪→ C.
(2) For any bigger finite subdiagram D ′ ↪→ C,

there is an algorithm allowing to compute from ρD, in finitely many steps,
the restriction ρD ′ of ρ to D ′.

Example: If T is an algebraic theory in a finite vocabulary,
models of T with values in finite sets
are “concrete points” of ET in this sense
with respect to the “cartesian syntactic category” C = Ccart

T .
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Internal traces of points:
Unlike in set-based mathematics,
points (or generalized points) of a topos E are external,
as they are defined as topos maps Set→ E (or E ′ → E),
just as models of a theory T are external to T.
Nevertheless, points of toposes have internal traces defined as subtoposes:

Proposition. – There are well-defined notions of{
− surjective map of toposes,
− embedding of a subtopos into a topos,

such that any (generalized) point of a topos E
e : E ′ → E uniquely factorizes as:

E ′

surjective map
// // Im(e) �

�

subtopos embedding
// E

Remarks:
• As a corollary, any topos map E ′ e−→ E induces a push-forward operation

e∗ : {subtoposes of E ′} −→ {subtoposes of E}
(E ′

1 ↪→ E ′) 7−→ (Im(E ′
1 ↪→ E ′ e−→ E) = e∗E ′

1 ↪→ E).
• It also induces a pull-back operation

e−1 : {subtoposes of E}→ {subtoposes of E ′}

characterized by e−1E1 ⊇ E ′
1 ⇔ E1 ⊇ e∗(E ′

1) .
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Topological expressions of traces of points:
Theorem (Grothendieck, SGA 4). –
Let E be a topos presented as the category of “sheaves”

ĈJ on a small category C endowed with a topology J.
Then there is a one-to-one correspondence

K 7−→ ĈK ↪→ ĈJ ∼= E ,{
topologies K on C
which contain J

}
∼−−→ {subtoposes of ĈJ ∼= E}.

Reminder:
A topology J on a category C is a notion of “covering” families

(Xi
xi−−→ X )i∈I of arrows of Csuch that:

(0) Any family (Xi
xi−−→ X )i∈I whose associated “sieve”

{X ′ x−→ X | x factorizes as X ′ → Xi
xi−→ X for at least one i ∈ I}

contains a covering family, is itself covering.

(1) For any X , X
idX−−→ X is covering.

(2) Any arrow X ′ → X transforms by pull-back coverings of X into coverings of X ′.
(3) A family (Xi

xi−−→ X )i∈I is a covering if it is transformed into coverings

by pull-back along the elements X ′
j

x ′
j−−→ X of a covering family of X .
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Approximations of topologies:
Example:

• Let X be a topological space, and C a dense family of open subsets of X .
An approximation of a subspace X ′ ↪→ X on some U ∈ C
is a family of smaller open subsets Ui ⊆ U, Ui ∈ C, i ∈ I,
such that X ′ ∩ U ⊆ ∪

i∈I
Ui .

• This is equivalent to requesting that (Ui ↪→ U)i∈I is covering

for the topology JX ′ on C corresponding to the subtopos EX ′ ↪→ EX ∼= (̂C)JX
.

Proposition. –
Consider a topos map e : E ′ → E ∼= ĈJ seen as a functor ρ : C → E ′.
Then a family of arrows of C

(Xi
xi−−→ X )i∈I

is covering for the topology Ke ⊇ J corresponding to Im(e) ↪→ E ∼= ĈJ

if and only if the family (ρ(Xi)
ρ(xi )−−−→ ρ(X ))i∈I is globally epimorphic in E ′.

Consequence for approximating topologies:
• If we only know an approximation of ρ, consisting in a restriction

ρD : D → E ′ to a subdiagram D ↪→ C,
then we can only deduce the restriction of Ke to families of arrows of D.

• In some cases, it may be enough to generate the whole topology Ke.
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Logical expressions of traces of points:

Theorem (Caramello, PhD thesis and [Theories, Sites, Toposes]). –
Let E be a topos incarnating the semantics of a first-order geometric theory T

E ∼= ET.
Then there is a one-to-one correspondence

T ′ 7−→ ET ′ ↪→ ET ∼= E ,
“quotient” theories T ′ of T,

considered up to
syntactic equivalence

 −→ {subtoposes of ET ∼= E}.

Reminder:
• A “quotient” of a theory T

is a theory T ′ written in the same vocabulary
whose list of axioms contains the axioms of T.

• Two quotient theories T1 and T2 of T
are “syntactically equivalent” if
the axioms of T1 or T2
are provable from the axioms of the other theory.
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Approximation of theories:

Proposition. –
Consider a topos map e : E ′ → E ∼= ET
corresponding to a model M ∈ T-mod (E ′) of a theory T in a topos E ′.
Then an implication between formulas written in the language of T

φ(xA1
1 , · · · , x

An
n ) ⊢ ψ(xA1

1 , · · · , x
An
n )

is provable in the quotient theory Te of T corresponding to
Im(e) ↪→ E ∼= ET

if and only if the interpretations of φ and ψ in the model M
Mφ,Mψ ↪→ MA1 × · · · × MAn

verify as subobjects Mφ ⊆ Mψ.

Consequence for approximating theories:
• If E ∼= ET is presented as E ∼= ĈJ , and

the topos map e : E ′ → E corresponds to a functor ρ : C → E ′

whose restriction ρD : D → E ′ to a subdiagram D ↪→ C we only know,
then we can only deduce Te-provable implications
between formulas φ,ψ which are interpretable in terms of ρD : D → E ′.

• In some cases, it may be enough to provide a list of axioms of Te.
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A general scheme of geometric processing and approximations:
• Classically, data are represented as points of (high dimension linear) spaces.

But, in the wider context of toposes, it would seem more natural to
represent data as subtoposes of some topos.

• Then subtoposes could be processed geometrically
by composing transforms of the form

q∗ ◦ p−1 : {subtoposes of ĈJ }→ {subtoposes of D̂K }

defined by topos maps E
q

��

p

��
ĈJ D̂K

corresponding to functors ρ : C → E , σ : D → E .

Proposition. – Suppose E ∼= L̂L and ρ, c are lifted to ρ : C → L, σ : D → L.
(i) For any subtopos E1 ↪→ ĈJ corresponding to a topology J1 ⊇ J on C,
its pull-back p−1E1 ↪→ L̂L corresponds to the topology L1 ⊇ L on L
generated by L and the transforms by ρ of the J1-covering families of C.
(ii)The push-forward q∗ ◦ p−1E1 ↪→ D̂K corresponds to the topology K1 ⊇ K on D for
which a family of arrows of D is covering if and only if its transform by σ is L1-covering.

Remark: It makes sense to restrict all data and computations to subdiagrams ofCand D.
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Semantic intertwinning for goal-oriented processing?
Question. – If data are already represented as subtoposes of a topos

ET0 incarnating the semantics of a theory T0,
how could we elaborate from T0 another theory T1 related to T0 by topos maps

E
q

  

p

~~
ET0 ET1

corresponding to a double model structure of types T0 and T1 on a topos E?
Expectation:

• The language of T1 should be more appropriate than the language of T0

to the type of information on the data we are interested in.
• Most often, the language of T1 should be “more global”.

Principles:
• The fact that the language of T1 is “more global” could correspond to the fact that

it would apply to an “invariant” construction on the topos E .
• This invariant construction would be interpreted as a model of T1 in E .
• This invariant construction could be higher-order,

and as a consequence non-compatible with pull-backs by topos maps E ′ → E .
• This would make the choice of the model E → ET0 very important.

It should be chosen so as to maximize the intertwinning of ET0 and ET1 .
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