Grothendieck toposes as bridges between geometry, meaning and formal languages

by Laurent Lafforgue

(Lagrange Center and Huawei Research Center in Boulogne)

Presentation at the Lagrange Center, rue de Grenelle, Paris

Tuesday September 17th, 2024

The double expression of semantic contents and their modelling by Grothendieck topos theory:

Proposed mathematical modelling:

Mathematical countries:

Definition. – *A "mathematical country" (or "category") consists in*

- $\text{cities } A, B, \dots$,
- *itineraries ^A* [→] *B between cities,*
- *an associative composition law of itineraries*

$$
\left(A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C\right) \longmapsto \left(A \stackrel{g \circ f}{\longrightarrow} C\right)
$$

which admits "units" $A \stackrel{\text{id}_A}{\longrightarrow} A$

Examples of mathematical countries:

- the country of groups and group homomorphisms,
- the country of topological spaces and continuous maps,
- for any group \overline{G} , the country consisting in
	- $\sqrt{ }$ − a unique city denoted *G*,
	- $\frac{1}{2}$ [−] itineraries *^G* [→] *^G* which are the elements *^g* of *^G*, − the composition law of elements of *G*,
		-
- for any topological space X , the country consisting in
- $\sqrt{ }$ cities which are the open subsets $U \subset X$,
- $\frac{1}{2}$ [−] itineraries *^U* [→] *^V* which are the inclusion relations *^U* [⊆] *^V*, − the composition of inclusion relations.
	-

 \mathcal{L}

 \mathcal{L}

The country of mathematical countries:

Definition. – *A mathematical country* C *is called*

- *"locally small" if, for any cities A*, *B of* C*, the itineraries* $A \rightarrow B$ *make up a <u>set</u>* $Hom(A, B)$ *,*
- *"small" if, furthermore, the cities of* C *make up a set.*

Definition. –

An (international) "twinning" (or "functor") between two mathematical countries F : \mathcal{C} → \mathcal{D} *consists in associating*

- $\sqrt{ }$ with any city X of C a city $F(X)$ of D,
	- with <u>any itinerary</u> $X \xrightarrow{f} Y$ of C an itinerary $F(X) \xrightarrow{F(f)} F(Y)$ of D ,

so as to respect compositions $X \xrightarrow{f} Y \xrightarrow{g} Z$
in the capacitlet $E(G \circ f) = E(G) \circ E(f)$ *in the sense that* $F(g \circ f) = F(g) \circ F(f)$.

Observations :

• Twinnings naturally compose

$$
\left(\mathcal{C} \xrightarrow{F} \mathcal{C}' \xrightarrow{G} \mathcal{C}''\right) \longmapsto \left(\mathcal{C} \xrightarrow{G \circ F} \mathcal{C}''\right).
$$
\n• This defines a country where $\begin{cases} - & \text{the cities are small countries,} \\ - & \text{the itineraries are twinnings.} \end{cases}$

Countries of twinnings:

Definition. – If $C \stackrel{F}{\Rightarrow} D$ are a couple of twinnings between <u>two countries</u>, *G a "passage" between these twinnings (or "functor transform")* ^ρ : *^F* [→] *^G consists in associating with any city X of* C *an itinerary* $\rho(X)$: $F(\overline{X}) \to G(X)$ *of* D *, so that, for any itinerary* $X \xrightarrow{f} Y$ *of C*, there is a "commutative square" $F(X) \xrightarrow{F(f)} F(Y)$ $\rho(X)$ $\rho(Y)$ *in the sense that* $\rho(Y) \circ F(f) = G(f) \circ \rho(X)$ *in* D. \mathbf{r} $^{\prime}$ $G(X) \xrightarrow{G(f)} G(Y)$

Observations :

• Passages between twinnings from $\mathcal C$ to $\mathcal D$ naturally compose

$$
(F \xrightarrow{\rho} G \xrightarrow{\rho'} H) \longmapsto (F \xrightarrow{\rho' \circ \rho} H).
$$

- $(-\mu, \mu) \mapsto (F \xrightarrow{\mu} G \xrightarrow{\mu} H) \mapsto (F \to \tau)$
• This <u>defines</u> a country $[\mathcal{C}, \mathcal{D}]$ where
	-
	- $\begin{cases} & \text{the cities are the winnings } \mathcal{C} \to \mathcal{D}, \\ & \text{the intensities are the passages between twinnings.} \end{cases}$
- If C is a small country and D is locally small, $[\mathcal{C}, \mathcal{D}]$ is locally small.

The reflection of a city in itineraries leading to this city:

Definition. – *If* C *is a locally small mathematical country, the reflection of a city X of* C

is the double map which associates $\sqrt{ }$

with any city A of C the set
Hom(A, X) = {*itineraries A*
$$
\rightarrow
$$
 X of C},

 $\Bigg\}$ • *with any itinerary A* [→] *B of* ^C *the composition application*

 $\text{Hom}(B, X) \xrightarrow{\bullet \circ f} \text{Hom}(A, X),$ $(B \xrightarrow{b} X) \longrightarrow (A \xrightarrow{b \circ f} X).$

Lemma. –

 $\overline{\mathcal{L}}$

\n- (i) For any city X of C, y(X) is a city of the country
$$
\hat{C} = [C^{\text{op}}, \text{Set}] = \underline{\text{country}}
$$
 of twinnings $C^{\text{op}} \rightarrow \text{Set}$, where $C^{\text{op}} = \underline{\text{country}}$ whose $\begin{cases} \text{cities are the cities of } C, \\ \text{tineraries } B \rightarrow A \text{ are the itineraries } A \rightarrow B \text{ of } C. \end{cases}$
\n- (ii) Any itinerary X $\stackrel{f}{\rightarrow}$ Y of C defines a passage $y(f) : y(X) \rightarrow y(Y)$.
\n

Looking at a country through its reflection:

Lemma (Yoneda). –
\n(i) Associating
\n
$$
\begin{cases}\n- & with any city X of C its reflection y(X),\n& with any tinenary X \xrightarrow{f} Y of C the passage
\n $y(f): y(X) \longrightarrow y(Y)$ \n
\n $y:C \longrightarrow \hat{C} = [C^{\text{op}}, \text{Set}].$ \n
\n(ii) This twinning y : C $\longrightarrow \hat{C}$ is "fully faithful" in the sense that,
\nfor any cities X, Y of C, the map
\n $\text{Hom}(X, Y) \longrightarrow \text{Hom}(y(X), y(Y)),$
\nis one-to-one
\n $(X \xrightarrow{f} Y) \longmapsto (y(X) \xrightarrow{y(f)} y(Y))$
$$

is one-to-one.

Consequences :

- Any city X of C is characterized (up to invertible itinerary) by its reflection $y(X)$ in \widehat{C} .
- A city *P* of \widehat{C} (or "potential city" of C) is called "representable" (or "real") if there exists a city *X* of *C* such that $y(X) \cong P$.

The extraordinary properties of countries of reflections:

Proposition. – *For any "mathematical country"* C *which is small, the country* \widehat{C} *of its "reflections" (or "presheaves") has the same constructive properties as the country* Set *of sets:*

 $\sqrt{ }$ (0) *It is locally small:*

itineraries between pairs of cities make up sets.

 (1) Finite and infinite products $\prod P_i$ of cities are always well-defined *i*∈*I*

as well as "fiber products"

$$
S' \times_S P \text{ defined by equations } s = p \text{ in:} \qquad \downarrow p
$$

$$
S' \xrightarrow{s} S
$$

- *^s*−[→] *^S* (2) *Finite and infinite sums* ` *Pⁱ are well-defined and disjoint, i*∈*I* and relations $R \rightrightarrows P$ always define quotients $P \twoheadrightarrow P'$.
	- (3) *Fiber products* $S' \times_S \bullet$ *over any itinerary* $S' \rightarrow S$
respect orbitrary sume and quotients by relations respect arbitrary sums and quotients by relations.
	- (4) *For any city P, its quotients* $\overline{P \rightarrow P'}$ *correspond one-to-one to equivalence relations* $R \hookrightarrow P \times P$, *in such a way that* $R = P \times_{P'} P$.

P

Completions of "mathematical countries" :

Definition. – *Let* C *be a "mathematical country" which is small. Let's call "completion" of* \overline{C} *any twinning with a "completed mathematical country"* E $\ell : \mathcal{C} \longrightarrow \mathcal{E}$ *such that* $\sqrt{ }$ $\overline{}$ • E*has the same properties (0), (1), (2), (3), (4) as the country of sets, for any cities* E_1 , E_2 *of* \mathcal{E}_1 *itineraries* $E_1 \rightarrow E_2$ *correspond one-to-one to families of maps* $\text{Hom}(\ell(X), E_1) \longrightarrow \text{Hom}(\ell(X), E_2)$ *indexed by cities X of* C*, which are compatible in the sense that, for any itinerary* $X \rightarrow Y$ of C, $\text{Hom}(\ell(Y), E_1) \longrightarrow \text{Hom}(\ell(Y), E_2)$ *the square* ľ *commutes.* ľ $\text{Hom}(\ell(X), E_1) \longrightarrow \text{Hom}(\ell(X), E_2)$

Completions and notions of coverings:

Definition. –

Consider a completion $\ell : \mathcal{C} \to \mathcal{E}$ *of a small "mathematical country" C. We say that a family of itineraries of* C*leading to a city X*

$$
X_i \xrightarrow{x_i} X, \quad i \in I,
$$

 $X_i \xrightarrow{x_i} X, \quad i \in I,$
is a covering of X if, in the completion $\mathcal{E},$ t he itineraries $\ell(X_i):\ell(X_i)\to\ell(X)$ make $\ell(X)$ appear as a quotient of $\coprod_{i\in I}\ell(X_i)$. *i*∈*I* **Lemma**. – The notion of covering defined by a completion $\ell : \mathcal{C} \to \mathcal{E}$

has the following following properties:

(A) Any unit itinerary X $\xrightarrow{\text{id}_X} X$ *is a covering.*

(B) If $(X_i \xrightarrow{x_i} X)_{i \in I}$ is a covering,

then for any itinerary $X' \to X$ *there exists a covering* (X'_{j}) x'_{j} *X'*)

such that all composites X ′ *j x*^{*i*} → *X i z i x i z i x*

(C) If $(X_i \xrightarrow{x_i} X)_{i \in I}$ is a covering and each X_i has a covering $(X_{i,j} \xrightarrow{x_{i,j}} X_i)_{j \in I_i}$, *then the composites* $X_{i,j} \xrightarrow{X_{i,j}} X_i \xrightarrow{X_i} X$ make up a covering of X.

(D) Any <u>family</u> $(X_i \xrightarrow{X_i} X)_{i \in I}$ which contains a covering is a covering.

Grothendieck topologies and coverings:

Definition. –

Let C *be a small "mathematical country". A "Grothendieck topology" on* C *is a notion of covering J which respects conditions (A), (B), (C), (D) of the previous lemma.*

Theorem. –

- **(i)** *Any "completion"* $\ell : \mathcal{C} \to \mathcal{E}$ *of* \mathcal{C} *is characterized by the topology J it defines.*
- **(ii)** *Conversely, any topology J of* C *defines a unique "completion"*

$$
C\longrightarrow \widehat{C}_J.
$$

Remark:

A topology *J* of C can also be seen as an "extrapolation principle".

Indeed, it allows to extrapolate from $\mathcal C$

the components of the completion $\widehat{\mathcal{C}}_J$.

Grothendieck's sites and toposes:

Definition. – A "site" is a pair (C, J) consisting in

- $\sqrt{ }$ • *a small "mathematical country"* C*,*
- $\frac{1}{2}$ • *a topology J on* C*,*

i.e. a notion of covering of cities of C *by families of itineraries.*

Definition. – A "topos" is a "mathematical country" \mathcal{E} *which can be constructed as a completion*

$$
\mathcal{E}\cong\widehat{\mathcal{C}}_J
$$

of some sites (C, *J*)*.*

Remark:

 \mathcal{L}

Any topos has infinitely many different presentations

$$
\mathcal{E}\cong\widehat{\mathcal{C}}_J.
$$

For any such presentation,

 $\mathcal C$ appears as a "sketch" of $\mathcal E$, which allows to fully reconstruct $\mathcal E$ if it is completed with an "extrapolation principle" *J*.

The site and the topos of a topological space:

Definition. – *Let X be a topological space.*

(i) It defines a site (C_X, J_X) consisting in

- $\sqrt{ }$ \int *a* mathematical country C_X whose cities are open subsets $U \subseteq X$ and whose <u>itineraries</u> are inclusion relations *U'* → *U*,
a tenelogy *L*, an *C*, for which coverings are families.
- $\overline{\mathcal{L}}$ • *a topology J^X on* C*^X for which coverings are families* $(U_i \hookrightarrow U)_{i \in I}$ such that $U = \bigcup_{i \in I} U_i$. *i*∈*I*

(ii) *This site defines a topos* \mathcal{E}_X *.*

Proposition. –

Let f : *^X* [→] *Y be a continuous map between topological spaces. Then:*

- **(i)** *The formation of pull-backs of open subsets of Y by f defines a twinning* $f^{-1}: C_Y \longrightarrow C_X$.
- (ii) *This twinning extends to a <u>twinning of completions</u>* $f^* : \mathcal{E}_Y \longrightarrow \mathcal{E}_X$ *
which respects which respects*
	- $\sqrt{ }$ • *arbitrary sums and quotients by relations R* ⇒ *E,*
		- *finite products and fiber products* $E_1 \times_E E_2$.

The country of toposes:

Definition. – *An itinerary between two toposes* $f : \mathcal{E}' \longrightarrow \mathcal{E}$ *is defined as a twinning in the reverse direction* $f^*: \mathcal{E} \longrightarrow \mathcal{E}'$

which respects

- $\sqrt{ }$ • *arbitrary sums and quotients by relations,*
	- *finite products ands fiber products.*

Theorem. – *If X*, *Y are topological spaces and Y is "sober", continuous maps ^f* : *^X* [−][→] *^Y*

correspond one-to-one to itineraries of toposes

$$
\mathcal{E}_X \longrightarrow \mathcal{E}_Y.
$$

Remark: In particular, points of *Y* correspond one-to-one to topos itineraries

Set
$$
\longrightarrow
$$
 \mathcal{E}_Y .

For that reason, "points" of a topos $\mathcal E$ are defined as topos itineraries Set $\longrightarrow \mathcal{E}$.

Geometry of toposes:

All usual notions of topology generalize in the context of toposes, in particular the notions of submersion and immersion:

Definition. –

Geometry of subtoposes:

Proposition. – (i) *Subtoposes* $\mathcal{E}' \hookrightarrow \mathcal{E}$ *of a topos* \mathcal{E} *make up an <u>ordered set</u>.* **(ii)** *Any family of subtoposes* $\mathcal{E}_i \hookrightarrow \mathcal{E}$, $i \in I$,
hespitally $\mathcal{E} \leftrightarrow \mathcal{E}$ and an intersection \mathcal{A} *has a join* $\bigcup_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}$ and an <u>intersection</u> $\bigcap_{i \in I} \mathcal{E}_i \hookrightarrow \mathcal{E}.$ *i*∈*I i*∈*I* (iii) One always has $\mathcal{E}' \cup (\bigcap \mathcal{E}_i) = \bigcap (\mathcal{E}' \cup \mathcal{E}_i)$. *i*∈*I i*∈*I*

Theorem. – *Any itinerary of toposes* E ′ *^f* [−][→] ^E *uniquely factorizes as* $\overline{\mathcal{E}' \longrightarrow \text{Im}(f)} \longrightarrow \mathcal{E}$.

Theorem. –

(i) *Any itinerary of toposes* E ′ *^f* [−][→] ^E *defines an "image" map*

$$
f_* : (\mathcal{E}'_1 \hookrightarrow \mathcal{E}') \longmapsto (\text{Im}(\mathcal{E}'_1) \hookrightarrow \mathcal{E}) .
$$

 $f_* : (\mathcal{E}_1' \hookrightarrow \mathcal{E}') \longmapsto (\text{Im}(\mathcal{E}_1') \hookrightarrow \mathcal{E})$.
This maps respects the ordering and arbitrary unions.

(ii) *It also defines a "pull-back" map* f^{-1} : $(\mathcal{E}_1 \hookrightarrow \mathcal{E})$ \longmapsto $(f^{-1}\mathcal{E}_1 \hookrightarrow \mathcal{E}')$ $\frac{characterized}{\text{by the property that}} \quad \mathcal{E}_1' \subseteq f^{-1} \mathcal{E}_1 \Leftrightarrow f_* \mathcal{E}_1' \subseteq \mathcal{E}_1$.
The "pull begit" map respects the exdering exhites untersection *The "pull-back" map respects the ordering, arbitrary intersections and finite unions.*

Syntax of formal languages or "theories":

Definition. – A "geometric" first-order theory $\mathbb T$ consists in:

(1) a vocabulary Σ *comprising*

- $\sqrt{ }$ $\overline{}$ • *a family of "city names" [such as: G (group), R (ring), M (module),* · · · *],*
	- *a family of "itineraries names" E*¹ · · · *Eⁿ ^e*−[→] *^E*

 ${s}$ *l such as: GG* \rightarrow *G, G* $\xrightarrow{(\bullet)^{-1}} G$

 $or \, RR \xrightarrow{+} R, \, RR \xrightarrow{} R, \, R \xrightarrow{-(\bullet)} R, \cdots, R$

a family of "relation names" $R \rightarrowtail E_1 \cdots E_n$ *[such as:* [≤][↣] *EE,* [∼] ⁷[→] *EE*, · · · *],*

(2) a list of axioms which have the form of implications $\varphi(\vec{x}) \vdash \psi(\vec{x})$ where

- $\mathbf{y} = \mathbf{x} = (x_1^{E_1}, \dots, x_n^{E_n})$ *is a finite family of <u>variables</u>* $x_i^{E_i}$ $\Bigg\}$ *associated with "city names" Eⁱ ,*
- $\overline{\mathcal{L}}$ • φ, ψ *are "formulas" in these variables which are constructed from itineraries names or relation names of* Σ *and which interpret only in terms of images of itineraries, arbitrary unions and finite intersections.*

 $\begin{array}{|c|c|} \hline \rule{0pt}{12pt} \rule{0pt}{2pt} \rule{0pt}{2$

Semantic expressions of formal languages:

Definition. – *Let* T *be a (geometric first-order) theory. Its "semantic expression" in a topos* $\mathcal E$ *is the mathematical country* $\mathbb{T}\text{-mod}(\mathcal{E})$ *of "models" of* $\mathbb T$ *in* $\mathcal E$ *in the following sense:* **(i)** *The cities are "models" M consisting in* $\sqrt{ }$ $\Big\}$ • *immersions* $\overline{MR} \hookrightarrow \overline{ME_1 \times \cdots \times ME_n}$
indexed by relation names $R \rightarrow E_1 \cdot$ *cities* ME *of* \mathcal{E} *indexed by city names* E *of* \mathbb{T} *,* • *itineraries* $ME_1 \times \cdots \times ME_n \xrightarrow{Me} ME \cup \{E \}$ $\frac{independ}{\text{by} }$ *by itinerary names* $e : E_1 \cdots E_n \to E$ of \mathbb{T} *, indexed by relation names* $R \rightarrowtail E_1 \cdots E_n$ *of* \mathbb{T} *, such that, for any axiom of* T $\varphi(\vec{x}) \vdash \psi(\vec{x})$ *in variables* $\vec{x} = (x_1^{E_1}, \dots, x_n^{E_n}),$ *the corresponding interpretation immersions* $M\varphi \longrightarrow ME_1 \times \cdots \times ME_n$, $M\psi \longrightarrow ME_1 \times \cdots \times ME_n$

are related by an inclusion

$$
M\phi\subseteq M\psi.
$$

(ii) Itineraries of models of T in E

 $M' \longrightarrow M$

consist in families of itineraries of $\mathcal E$

 $M'E \longrightarrow ME$ indexed by "city names" *E* of T

such that the following squares indexed by itinerary names $e: E_1 \cdots E_n \rightarrow E$ and relation names $R \rightarrow E_1 \cdots E_n$

$$
M'E_1 \times \cdots \times M'E_n \xrightarrow{M'e} M'E
$$

\n
$$
ME_1 \times \cdots \times ME_n \xrightarrow{Me} ME \xrightarrow{M'e} ME
$$

\n
$$
M'R \xrightarrow{M'E_1} \times \cdots \times M'E_n
$$

\n
$$
MR \xrightarrow{M}{E_1} \times \cdots \times ME_n
$$

commute.

The network of semantic expressions of a formal language:

Lemma. – *Let* T *be a (geometric first-order) theory. Any itinerary of toposes* $f: \mathcal{E}' \longrightarrow \mathcal{E}$ *naturally defines a twinning* between the semantic expressions of $\mathbb T$ in $\mathcal E$ and $\mathcal E'$

 $f^*: \mathbb{T}\text{-mod}(\mathcal{E}) \longrightarrow \mathbb{T}\text{-mod}(\mathcal{E}').$

Explanation : An itinerary $f : \mathcal{E}' \to \mathcal{E}$ consists by definition in a twinning $f^*:\mathcal{E}\longrightarrow \mathcal{E}'$

which respects arbitrary sums, quotients, finite products and fiber products. It transforms Ĩ

\n- \n
$$
\begin{cases}\n \bullet & \text{cities } ME \text{ of } \mathcal{E} \text{ into cities } f^* M E \text{ of } \mathcal{E}', \\
 \bullet & \text{itineraries } M E_1 \times \cdots \times M E_n \xrightarrow{Me} M E\n \end{cases}
$$
\n
\n

• itineraries
$$
ME_1 \times \cdots \times ME_n \xrightarrow{Me} ME
$$
 of \mathcal{E}

 $\frac{1}{2}$ into <u>itineraries</u> $f^*ME_1 \times \cdots \times f^*ME_n \xrightarrow{f^*Me} f^*ME$ of \mathcal{E}' ,
immorpions $\frac{1}{2}$ $AB \times \cdots \times \frac{1}{2}$ of $\frac{1}{2}$

 $immersions MR \hookrightarrow ME_1 \times \cdots \times ME_n$ of $\mathcal E$

 $f^*MR \hookrightarrow f^*ME_1 \times \cdots \times f^*ME_n$ of \mathcal{E}' .
 \cdots \cdots

Furthermore, it respects images, arbitrary unions and finite intersections, and, as a consequence, interpretations of formulas $\varphi(\vec{x})$, $\psi(\vec{x})$ which make up the axioms $\varphi(\vec{x}) \vdash \psi(\vec{x})$ of \mathbb{T} .

 $\overline{\mathcal{L}}$

The network of countries of topos itineraries:

Definition. – *For any toposes* E, E ′ *, let's denote* $Geom(\mathcal{E}', \mathcal{E})$

the "mathematical country" defined as follows:

(i) *Its cities are topos itineraries*

$$
f:\mathcal{E}'\longrightarrow\mathcal{E}
$$

i.e. twinnings

$$
f^*:\mathcal{E}\longrightarrow \mathcal{E}'
$$

: E −[→] ^E *which respect sums, quotients, finite products and fiber products.*

(ii) *Its itineraries*

$$
(\mathcal{E}' \xrightarrow{f_1} \mathcal{E}) \xrightarrow{\rho} (\mathcal{E}' \xrightarrow{f_2} \mathcal{E})
$$

*f*₁ $\ell : \ell^r \xrightarrow{f_1} \ell : \ell^r \xrightarrow{f_2} \ell^r \xrightarrow{f_3} \ell^r$
are passages between the corresponding twinnings

$$
\rho: f_1^* \longrightarrow f_2^*.
$$

Lemma. –

Composition with any topos itinerary E ′ 2 $\xrightarrow{g} \mathcal{E}'_1$ *defines a twinning between countries of topos itineraries*

$$
\text{Geom}(\mathcal{E}'_1, \mathcal{E}) \longrightarrow \text{Geom}(\mathcal{E}'_2, \mathcal{E}) .
$$

Theories of points of a topos :

If $\mathcal E$ is a topos, the country of points of $\mathcal E$ is by definition $pt(\mathcal E)=\text{Geom}(\text{Set},\mathcal E)$. More generally, any $\operatorname{Geom}(\mathcal{E}',\mathcal{E})$ can be called the country of " \mathcal{E}' -parametrized points of \mathcal{E} ".

Theorem. – *For any presentation of a topos* \mathcal{E} *by a site* (\mathcal{C}, J) $\mathcal{E} \cong \widehat{\mathcal{C}}_J$,

there exists a (geometric first-order) theory $\mathbb{T}_{C,J}$ *such that*

$$
\int \bullet
$$
 "city names" of $\mathbb{T}_{\mathcal{C},J}$ are crities X of \mathcal{C} ,

$$
\begin{cases}\n\cdot & \text{if } \frac{\sin \theta}{\sin \theta} & \text{if } \frac{\sin \theta}{\sin \theta} \text{ is } \theta, \\
\cdot & \text{if } \frac{\sin \theta}{\cos \theta} & \text{if } \frac{\sin \theta}{\cos \theta} \text{ is } \theta.\n\end{cases}
$$
\n
$$
\text{This is a non-relation names,}
$$

 \mathcal{L}

(•)◦*f* ľ,

and which describes the points of $\mathcal E$ *in the following sense:*

(1) Any topos
$$
\mathcal{E}'
$$
 defines an equivalence $\text{Geom}(\mathcal{E}', \mathcal{E}) \longrightarrow \mathbb{T}_{\mathcal{C}, J}$ -mod (\mathcal{E}') .
(2) The sequence are natural in the sense that

(2) *These equivalences are natural in the sense that,*

for any topos itinerary
$$
\mathcal{E}'_2 \xrightarrow{f} \mathcal{E}'_1
$$
, the square

$$
\operatorname{Geom}(\mathcal{E}'_1,\mathcal{E}) \stackrel{\sim}{\longrightarrow} \mathbb{T}_{\mathcal{C},J}\text{-mod}(\mathcal{E}'_1
$$

Geom $(\mathcal{E}'_2, \mathcal{E}) \longrightarrow \mathbb{T}_{\mathcal{C},J}$ -mod (\mathcal{E}'_2)

is commutative.

f ∗

ľ

′

)

The topos incarnation of the semantics of a formal language:

Theorem. – *Let* T *be a (geometric first-oder) theory. Then there exists a topos* \mathcal{E}_T *endowed with a model*

 $U_{\mathbb{T}}$ *of* \mathbb{T} *in* $\mathcal{E}_{\mathbb{T}}$ *,*

such that, for any topos \mathcal{E} , the natural twinning

$$
\begin{cases} \operatorname{Geom}(\mathcal{E}, \mathcal{E}_{\mathbb{T}}) & \longrightarrow & \mathbb{T} \text{-mod}(\mathcal{E}) \, , \\ \quad (\mathcal{E} \xrightarrow{f} \mathcal{E}_{\mathbb{T}}) & \longmapsto & f^*U_{\mathbb{T}} \, , \end{cases}
$$

is an equivalence.

Remarks :

- **(i)** The topos \mathcal{E}_T endowed with the model U_T is unique up to equivalence. The model U_T in \mathcal{E}_T is called the "universal model" of T .
- **(ii)** An implication between two formulas $\varphi(\vec{x}) \vdash \psi(\vec{x})$ is provable in T if and only if it is verified by U_T .
- **(iii)** For any topos \mathcal{E} , there are infinitely many theories \mathbb{T} such that

$$
\overline{\mathcal{E}}\cong \mathcal{E}_{\mathbb{T}}.
$$

Two theories T and T' verify the condition

$$
\overline{\mathcal{E}_{\mathbb T} \cong \mathcal{E}_{\mathbb T'}}
$$

if and only if their semantics are equivalent.