Probability measures on a space, "two-valued" topologies and localic toposes of probability measures

by Laurent Lafforgue

(Huawei Fundamental Research Center, Boulogne-Billancourt, France)

USTC, Hefei, Sunday July 2nd, 2023

Probability measures on a space :

Definition. – Let X be a set.

Let \mathcal{U} be a family of subsets of X which is stable by $\begin{cases} finite intersections, \\ countable unions. \end{cases}$

A probability measure on (X, U) is an application

$$\mu: \mathcal{U} \longrightarrow [0,1]$$

such that

(•
$$\mu(\emptyset) = 0 \text{ and } \mu(X) = 1,$$

• $\mu(U \cup V) + \mu(U \cap V) = \mu(U) + \mu(V) \text{ for any } U, V \in U,$
• $\mu(U) = \sup_{n \in \mathbb{N}} \mu(U_n)$

for any increasing sequence of $U_n \in \mathcal{U}$, $n \in \mathbb{N}$, whose union is $U = \bigcup_{n \in \mathbb{N}} U_n$

Remark. – The family $\overline{\mathcal{U}}$ of subsets of X which are arbitrary unions of elements of \mathcal{U} is stable by $\begin{cases} \text{arbitrary unions,} \\ \text{finite intersections.} \end{cases}$ It is a topology on X.

The concept of μ -negligible difference :

Definition. – Let μ be a probability measure on a space (*X*, *U*). The <u>difference</u> between two ordered elements of *U*

 $U' \subseteq U$

is said to be μ -negligible if, for any $\varepsilon > 0$, there is an element U'' of \mathcal{U} such that $U \subseteq U' \cup U''$ and $\mu(U'') < \varepsilon$.

Lemma. –

- (i) If the difference between two elements $U' \subseteq U$ of \mathcal{U} is μ -negligible, the same is true of the difference $U' \cap V \subseteq U \cap V$ for any $V \in \mathcal{U}$.
- (ii) If differences $U'' \subseteq U'$ and $U' \subseteq U$ are μ -negligible, the same applies to the difference $U'' \subseteq U$.
- (iii) For any sequence of ordered pairs of elements of $\mathcal U$

 $U'_n \subseteq U_n, \quad n \in \mathbb{N},$

whose differences are μ -negligible, the same applies to the difference

$$\bigcup_{n\in\mathbb{N}}U'_n\subseteq\bigcup_{n\in\mathbb{N}}U_n$$
.

Grothendieck topology associated with a notion of negligible :

Definition. - Let U be an ordered set equipped with

- a sup \bigvee of <u>countable families</u>,
- an <u>inf</u> ∧ of <u>finite families</u>, <u>distributive</u> with respect to ∨.

Let \mathcal{N} be a family of ordered pairs $U' \leq U$ of elements of \mathcal{U} , such that :

(1) Whenever
$$U' \leq U$$
 is in \mathcal{N} , then for any $V \in \mathcal{U}$,
 $U' \wedge V \leq U \wedge V$ is still in \mathcal{N} .

(2) If
$$U'' \leq U'$$
 and $U' \leq U$ are in \mathcal{N} , then $U'' < U$ is still in \mathcal{N}

(3) If
$$(U'_n \leq U_n)_{n \in \mathbb{N}}$$
 are in \mathcal{N} , then $\bigvee_{n \in \mathbb{N}} U'_n \leq \bigvee_{n \in \mathbb{N}} U_n$ is still in \mathcal{N} .

Then we define a <u>Grothendieck topology</u> J_N on \mathcal{U} , seen as a <u>cartesian category</u>, by deciding that a family of morphisms $U_i < U$, $i \in I$,

is covering if it contains a countable subfamily

 $egin{array}{ll} U_{i_n} \leq U\,, & n\in \mathbb{N}\,, \ & \bigvee\limits_{n\in \mathbb{N}} U_{i_n} \leq U \end{array}$

is an element of \mathcal{N} .

L. Lafforgue

such that the ordered pair

Grothendieck topologies associated with notions of negligible :

Lemma. – Let U be an ordered set equipped with

- a sup \bigvee of <u>countable families</u>,
- an <u>inf</u> ∧ of <u>finite families</u>, <u>distributive</u> with respect to ∨.

Then a Grothendieck topology J on \mathcal{U} is the topology $J_{\mathcal{N}}$ associated with a notion of "negligible difference" \mathcal{N} on ordered pairs

 $U' \leq U$ of elements of \mathcal{U} ,

- if and only if it satisfies the following conditions :
- (1') A family of morphisms of U seen as a category $U_i \leq U, \quad i \in I,$

is J-covering if and only if

it contains a countable J-covering subfamily.

(2') For any countable family of elements of U $(U_n)_{n \in \mathbb{N}}$ with $\bigvee_{n \in \mathbb{N}} U_n = U$, the countable family of morphisms $U_n \longrightarrow U$, $n \in \mathbb{N}$,

is J-covering.

The topos associated with a notion of negligible difference :

Corollary. -An ordered set (\mathcal{U}, \leq) which admits (\setminus countable, \wedge finite distributive) and which is equipped with a notion \mathcal{N} of negligible difference of ordered pairs U' < Udefines a site $(\mathcal{U}, J_{\mathcal{N}})$ and so a topos $\widehat{\mathcal{U}}_{\mathcal{N}}$ endowed with a Cartesian canonical functor $\ell:\mathcal{U}\longrightarrow \mathcal{U}_{\mathcal{N}}$. Corollary. – In particular, a probability measure μ on some (X, U)defines a notion \mathcal{N}_{μ} of negligible difference of ordered pairs $U' \subset U$

and therefore a topos

endowed with a <u>Cartesian canonical functor</u> $\ell: \mathcal{U} \longrightarrow \widehat{\mathcal{U}}_{\mathcal{N}_{\mu}}$.

Points of toposes and flat functors :

For a notion \mathcal{N} of negligible difference on $\overline{(\mathcal{U}, \leq, \bigvee \text{ countable}, \land \text{ finite distributive})}$, the category of points of the associated topos $\operatorname{pt}(\widehat{\mathcal{U}}_{\mathcal{N}})$ identifies with the category of functors $x^*: \mathcal{U} \longrightarrow \operatorname{Set}$ which are

- <u>flat</u>, i.e. <u>Cartesian</u> (since \mathcal{U} is <u>Cartesian</u>),
- $J_{\mathcal{N}}$ -<u>continuous</u>.

Lemma. – Let $(\mathcal{U}, \leq, \land finite)$ be a <u>Cartesian ordered set</u>, which in particular admits a greater element *X*.

(I) The <u>flat functors</u> (i.e. <u>Cartesian</u> functors)

 $x^*: \mathcal{U} \longrightarrow \text{Set}$

are indexed by subfamilies $\mathcal P$ of $\mathcal U$ such that

- \mathcal{P} contains X and is stable by \wedge ,
- for every $U \leq V$, we have $V \in \mathcal{P}$ if $U \in \mathcal{P}$.

(ii) The <u>functor</u> $x_{\mathcal{P}}^*$ associated with such a subfamily \mathcal{P} is $\{U \mapsto \{\bullet\} \text{ if } U \in \mathcal{P}, \}$

$$J \longmapsto \emptyset$$
 if $U \notin \mathcal{P}$

The points of the topos $\widehat{\mathcal{U}}_{\mathcal{N}}$:

Proposition. -Let \mathcal{N} be a notion of negligible difference on $(\mathcal{U}, <, \lor)$ countable, \land finite distributive). Let x* be a cartesian functor $x^* = x_{\mathcal{D}}^* : \mathcal{U} \longrightarrow \text{Set}$ defined by a subfamily $\mathcal{P} \subseteq \mathcal{U}$ which is stable by finite inf \wedge , switch to larger elements. Then x^* is J_N -continuous if and only if, for every $U \in \mathcal{U}$ and every countable family $U_n < U$, $n \in \mathbb{N}$. such that the difference $\bigcup U_n \leq U$ $n \in \mathbb{N}$ is in \mathcal{N} , we have $U \in \mathcal{P}$ if and only if there exists $n \in \mathbb{N}$ such that

 $U_n \in \mathcal{P}$. Measures and topologies

The special case of families of subsets of a space :

Lemma. – Let us assume that $(\mathcal{U}, \leq, \bigvee \text{ countable}, \land \text{ finite})$ is a family of subsets of a space *X*, which we suppose <u>stable</u> by <u>countable unions</u> \lor and <u>finite intersections</u> \land . Then :

(I) Any element $x \in X$ defines a <u>cartesian functor</u>

 $x^* = x^*_{\mathcal{P}} : \mathcal{U} \longrightarrow \text{Set}$

by $\mathcal{P} = \mathcal{P}_x = \{ U \in \mathcal{U} \mid x \in U \}.$

(ii) This functor is J_N -<u>continuous</u> if and only if, for any ordered pair of elements of \mathcal{U}

 $U' \subseteq U$, such that $x \in U$ and $x \notin U'$, the difference $U' \subset U$

cannot be in \mathcal{N} .

Remark. – If \mathcal{N} is defined by a probability measure μ on \mathcal{U} , the condition of (ii) is verified if, for any pair

 $U' \subseteq U$ such that $x \in U$ and $x \notin U'$, one has $\mu(U') < \mu(U)$.

Spaces of sequences and incidence frequencies :

Let X be a set, and $X^{\mathbb{N}}$ be the space of sequences of elements of X

 $x_{\bullet} = (x_n)_{n \in \mathbb{N}}$.

Definition. -

For any sequence $x_{\bullet} = (x_n)_{n \in \mathbb{N}}$, the sequence of the incidence frequencies of a subset $U \subseteq X$ in x_{\bullet} is

$$p_n^U(x_{\bullet}) = \frac{\#\{0 \le k \le n \mid x_k \in U\}}{n+1} \in [0,1], \quad n \in \mathbb{N}.$$

Definition. -

For any sequence $x_{\bullet} = (x_n)_{n \in \mathbb{N}}$,

the lower and upper limit frequencies

<u>of a subset</u> $U \subseteq X$ in x_{\bullet} are

$$p_{-}^{U}(x_{\bullet}) = \liminf_{n \mapsto +\infty} p_{n}^{U}(x_{\bullet}) = \lim_{n \mapsto +\infty} \inf_{k \ge n} p_{k}^{U}(x_{\bullet})$$

and

$$p^U_+(x_{\bullet}) = \limsup_{n \mapsto +\infty} p^U_n(x_{\bullet}) = \lim_{n \mapsto +\infty} \sup_{k \ge n} p^U_k(x_{\bullet}).$$

Subspaces of sequences defined by limit incidence frequencies :

Definition. -

For any <u>subset</u> $U \subseteq X$ and any <u>element</u> $q \in [0, 1]$, we have two associated subspaces of $X^{\mathbb{N}}$

$$\mathcal{P}^U_{\geq q}(X^{\mathbb{N}}) = \{x_ullet\in X^{\mathbb{N}} \mid \mathcal{p}^U_-(x_ullet) \geq q\}$$

and

$$\mathcal{P}^U_{\leq q}(X^{\mathbb{N}}) = \{x_{ullet} \in X^{\mathbb{N}} \mid \mathcal{P}^U_+(x_{ullet}) \leq q\}.$$

Remarks. -

if and only if, for any
$$\varepsilon > 0$$
, the set

$$\{n \in \mathbb{N} \mid p_n^U(x_{\bullet}) > q + \varepsilon\}$$
 is finite.

Lattice of subspaces defined by limit incidence frequencies :

Definition. – Let X be a set. Let \mathcal{U} be a family of subsets of X stable by finite intersections and countable unions. Let Q be a dense subset of [0, 1]. We will then denote $\mathcal{U}_{\mathbb{N}}$

the family of subsets of $X^{\mathbb{N}}$ which can be written as countable unions of finite intersections of subsets of the form

$$\mathcal{P}^U_{\geq q}(X^\mathbb{N}) = \{x_ullet\in X^\mathbb{N} \mid oldsymbol{p}^U_-(x_ullet) \geq q\}$$

or

$$\mathcal{P}^U_{\leq q}(X^{\mathbb{N}}) = \{x_ullet\in X^{\mathbb{N}} \mid \mathcal{p}^U_+(x_ullet) \leq q\}$$

with $U \in \mathcal{U}$ and $q \in Q$.

Remark. – Therefore $\mathcal{U}_{\mathbb{N}}$ is the smallest family of subsets of $X^{\mathbb{N}}$ which contains the $P^{U}_{\geq q}(X^{\mathbb{N}})$ and $P^{U}_{\leq q}(X^{\mathbb{N}})$, $U \in \mathcal{U}, q \in Q$,

and which is stable by finite intersections and countable unions.

Inclusion relations between subspaces defined by limit frequencies :

We consider as previously a family \mathcal{U} of subsets of a set *X*.

Lemma. –

 (i) For any subset U ∈ U of X and any elements q₁ ≤ q₂ of Q ⊆ [0, 1], we have the <u>inclusion relation</u>

$$\mathsf{P}^{U}_{\geq q_1}(X^{\mathbb{N}}) \supseteq \mathsf{P}^{U}_{\geq q_2}(X^{\mathbb{N}})$$

and

$$\mathcal{P}^U_{\leq q_1}(X^{\mathbb{N}}) \subseteq \mathcal{P}^U_{\leq q_2}(X^{\mathbb{N}})$$
 .

 (ii) For any subsets U ⊆ V of X belonging to U and any element q of Q ⊆ [0, 1], we have the inclusion relation

$$P^U_{\geq q}(X^{\mathbb{N}}) \subseteq P^V_{\geq q}(X^{\mathbb{N}})$$

and

$$\mathsf{P}^U_{\leq q}(X^{\mathbb{N}}) \supseteq \mathsf{P}^V_{\leq q}(X^{\mathbb{N}})$$

Exclusion relations between subspaces defined by limit frequencies :

We still consider a family \mathcal{U} of subsets of a set X.

Lemma. –

For any subset $U \in \mathcal{U}$ of X and any elements q < q' of $Q \subseteq [0, 1]$, we have the exclusion relation

$$\mathcal{P}^{U}_{\leq q}(X^{\mathbb{N}}) \cap \mathcal{P}^{U}_{\geq q'}(X^{\mathbb{N}}) = \emptyset.$$

Proof. -

This follows from the definitions

$$\begin{aligned} & \mathcal{P}_{\leq q}^{U}(X^{\mathbb{N}}) = \{ x_{\bullet} \in X^{\mathbb{N}} \mid \mathcal{p}_{+}^{U}(x_{\bullet}) \leq q \}, \\ & \mathcal{P}_{\geq q'}^{U}(X^{\mathbb{N}}) = \{ x_{\bullet} \in X^{\mathbb{N}} \mid \mathcal{p}_{-}^{U}(x_{\bullet}) \geq q' \} \end{aligned}$$

since $p^U_+(x_{ullet})$ and $p^U_-(x_{ullet})$

are the upper and lower limits of the same sequence

$$P_n^U(x_{\bullet}), \quad n \in \mathbb{N}.$$

The property of additivity of incidence frequencies :

Lemma. –

For any sequence $x_{\bullet} \in X^{\mathbb{N}}$ of elements of X and for any subsets U, V of X, we have for any $n \in \mathbb{N}$ the <u>formula</u>

$$\boldsymbol{p}_n^U(\boldsymbol{x}_{\bullet}) + \boldsymbol{p}_n^V(\boldsymbol{x}_{\bullet}) = \boldsymbol{p}_n^{U \cup V}(\boldsymbol{x}_{\bullet}) + \boldsymbol{p}_n^{U \cap V}(\boldsymbol{x}_{\bullet}) \,.$$

Proof. -

Indeed, we have for any subset U of X

$$p_n^U(x_{\bullet}) = \frac{1}{n+1} \cdot \sum_{0 \le k \le n} \mathrm{I}_U(x_k),$$

denoting

and we observe that the functions

11/1

$$\mathbb{I}_U, \ \mathbb{I}_V, \ \mathbb{I}_{U \cup V}, \ \mathbb{I}_{U \cap V}$$

are linked by the formula

$$I\!\!I_U + I\!\!I_V = I\!\!I_{U \cup V} + I\!\!I_{U \cap V} .$$
Measures and topologies

Translation of additivity for subspaces defined by incidence frequencies :

Corollary. – For any subsets
$$U, V \in U$$
 of X
and any elements $q_1, q_2, q_3, q_4 \in Q \subseteq [0, 1]$
linked by the formula $q_1 + q_2 = q_3 + q_4$, we have the inclusion relations

$$\begin{cases} P_{\geq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\geq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\leq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \subseteq P_{\geq q_{4}}^{U\cup V}(X^{\mathbb{N}}), \\ P_{\leq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\leq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\geq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \subseteq P_{\leq q_{4}}^{U\cup V}(X^{\mathbb{N}}), \\ \begin{cases} P_{\geq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\geq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\leq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\geq q_{3}}^{U\cap V}(X^{\mathbb{N}}), \\ P_{\leq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\leq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\geq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\leq q_{3}}^{U\cap V}(X^{\mathbb{N}}), \\ \end{cases} \\ \begin{cases} P_{\geq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\leq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \cap P_{\geq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\leq q_{2}}^{V}(X^{\mathbb{N}}), \\ P_{\leq q_{1}}^{U}(X^{\mathbb{N}}) \cap P_{\geq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \cap P_{\geq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\geq q_{2}}^{V}(X^{\mathbb{N}}), \\ \end{cases} \\ \end{cases} \\ \begin{cases} P_{\geq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\geq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \cap P_{\geq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\geq q_{2}}^{V}(X^{\mathbb{N}}), \\ P_{\geq q_{2}}^{V}(X^{\mathbb{N}}) \cap P_{\geq q_{3}}^{U\cap V}(X^{\mathbb{N}}) \cap P_{\leq q_{4}}^{U\cup V}(X^{\mathbb{N}}) \subseteq P_{\geq q_{1}}^{U}(X^{\mathbb{N}}), \\ \end{cases} \end{cases} \end{cases}$$

Expressing the "law of large numbers" :

Theorem. –

Let \mathcal{U} be a family of subsets of a set Xwhich is <u>stable</u> by finite intersections and <u>countable unions</u>. Let $\mu : \mathcal{U} \to [0, 1]$ be a <u>probability measure</u>. Let $\mathcal{U}_{\mathbb{N}}$ be the family of subspaces of $X^{\mathbb{N}}$ which are <u>countable unions of finite intersections</u>

of subspaces of the form

 $P^U_{\geq q}(X^{\mathbb{N}})$ or $P^U_{\leq q}(X^{\mathbb{N}})$ with $U \in \mathcal{U}$ and $q \in Q \subseteq [0, 1]$. Then :

(i) The <u>measure</u> μ on \mathcal{U} induces a product measure $\mu_{\mathbb{N}}$ on $\mathcal{U}_{\mathbb{N}}$.

- (ii) The <u>measure</u> $\mu_{\mathbb{N}}$ <u>induces</u> a <u>notion</u> of "<u>negligible difference</u>" $\mathcal{N}_{\mathbb{N}}$ such that, for any subset $U \in \mathcal{U}$ and any $q \in Q \subseteq [0, 1]$, we have
 - $P^U_{\leq q}(X^{\mathbb{N}})$ is <u>negligible</u> if $q < \mu(U)$,
 - $P^U_{\geq q}(X^{\mathbb{N}})$ is <u>negligible</u> if $q > \mu(U)$,
 - the <u>difference</u> $P^U_{\leq q}(X^{\mathbb{N}}) \subseteq X^{\mathbb{N}}$ is <u>negligible</u> if $q \geq \mu(U)$,
 - the <u>difference</u> $P^U_{\geq q}(X^{\mathbb{N}}) \subseteq X^{\mathbb{N}}$ is <u>negligible</u> if $q \leq \mu(U)$.

Consequence for the relationship between probability measures and Grothendieck topologies :

We consider as before a family \mathcal{U} of subsets of Xwhich is stable by finite intersections and countable unions. We still denote $\mathcal{U}_{\mathbb{N}}$ the family of subspaces of $X^{\mathbb{N}}$ which are countable unions of finite intersections of subspaces of the form

Then : $P^U_{\geq q}(X^{\mathbb{N}})$ or $P^U_{\leq q}(X^{\mathbb{N}})$ with $U \in \mathcal{U}$ and $q \in Q \subseteq [0, 1]$.

Corollary. -

- (i) A <u>measure</u> μ on \mathcal{U} induces a product measure $\mu_{\mathbb{N}}$ on $\mathcal{U}_{\mathbb{N}}$.
- (ii) The <u>measure</u> $\mu_{\mathbb{N}}$ <u>induces</u> a <u>notion</u> of "negligible difference" \mathcal{N}_{μ} on the ordered pairs of elements of $\mathcal{U}_{\mathbb{N}}$.
- (iii) The knowledge of this <u>notion</u> \mathcal{N}_{μ} of "negligible difference" is equivalent to that of the Grothendieck topology J_{μ} on $\mathcal{U}_{\mathbb{N}}$ it defines.
- (iv) It is also equivalent to knowing the subtopos $(\widehat{\mathcal{U}_{\mathbb{N}}})_{J_{\mathbb{N}}}$ of $\widehat{\mathcal{U}}_{\mathbb{N}}$.
- (v) The knowledge of \mathcal{N}_{μ} or of the topology J_{μ} is enough to reconstruct the measure μ on \mathcal{U} .

Consequences independent of the choice of measure :

We still consider the family \mathcal{U} of subsets of Xand the family $\mathcal{U}_{\mathbb{N}}$ of subspaces of $X^{\mathbb{N}}$ which is associated with it by the consideration of limit incidence frequencies.

$\begin{array}{l} \textbf{Corollary.} - \\ \textit{For any } \underline{\textit{measure}} \; \mu \; \textit{of} \; \mathcal{U}, \\ \textit{the notion of negligible difference} \; \mathcal{N}_{\mu} \; \textit{on} \; \mathcal{U}_{\mathbb{N}} \\ \textit{which is induced by the product measure} \; \mu_{\mathbb{N}} \\ \textit{satisfies the following property :} \end{array}$

(For any subset $U \in \mathcal{U}$ and any elements $q \ge q'$ of $Q \subseteq [0, 1]$, the <u>difference</u> $P_{\le q}^U(X^{\mathbb{N}}) \cup P_{\ge q'}^U(X^{\mathbb{N}}) \subseteq X^{\mathbb{N}}$ (is <u>negligible</u>.

An expression of the compatibility of measures with countable unions :

We still consider the family \mathcal{U} of subsets of Xand the family $\mathcal{U}_{\mathbb{N}}$ of subspaces of $X^{\mathbb{N}}$ which is <u>associated</u> with it.

Corollary. -

Suppose the <u>dense subset</u> $Q \subseteq [0, 1]$ is <u>countable</u>.

For any <u>measure</u> μ on \mathcal{U} ,

the induced notion \mathcal{N}_{μ} of negligible difference on $\mathcal{U}_{\mathbb{N}}$

satisfies the following property :

(For any increasing sequence $(U_n)_{n \in \mathbb{N}}$ of elements of \mathcal{U} , with

$$U=\bigcup_{n\in\mathbb{N}}U_n$$
,

and for any element $p \in [0, 1]$, the difference between elements of $\mathcal{U}_{\mathbb{N}}$

$$\bigcup_{n\in\mathbb{N},q\in Q\atop q>p}P_{\geq q}^{U_n}(X^{\mathbb{N}})\subseteq \bigcup_{q\in Q\atop q>p}P_{\geq q}^U(X^{\mathbb{N}})$$

is negligible.

Proof. -

- If $p \ge \mu(U)$, then all parts involved are negligible.
- If p < μ(U), then there exists n ∈ N and q ∈ Q such that p < q < μ(U_n) ≤ μ(U). It follows that the difference P^{U_n}_{>q}(X^N) ⊂ X^N is negligible.

The question of characterizing Grothendieck topologies associated with measures :

We recall that \mathcal{U} is a family of subsets of a set X, which is <u>stable</u> by <u>finite intersections</u> and by <u>countable unions</u>. We denoted $\mathcal{U}_{\mathbb{N}}$ the family of subspaces of $X^{\mathbb{N}}$

which are <u>countable unions of finite intersections</u>

F

of subspaces of the form

$$\mathcal{P}^{U}_{\geq q}(\mathcal{X}^{\mathbb{N}})$$

$$P^U_{\leq a}(X^{\mathbb{N}})$$

with $U \in \mathcal{U}$ and $q \in Q$.

Here, Q is a subset of [0, 1] such that

- Q is countable,
- *Q* is <u>dense</u> ln [0, 1],
- for any elements $q_1, q_2, q_3 \in Q$ and $q \in [0, 1]$, we have $q \in Q$ if $q_1 + q_2 = q_3 + q$.

Question. – <u>How to characterize</u> the Grothendieck topologies J on $\mathcal{U}_{\mathbb{N}}$, corresponding to a notion of negligible difference \mathcal{N} , which are associated with probability measures μ on \mathcal{U} ?

or

Statement of the characterization of topologies associated with measures :

Proposition. – A Grothendieck topology J on $\mathcal{U}_{\mathbb{N}}$ is associated with a probability measure μ on \mathcal{U} if and only if it corresponds to a notion of "negligible difference" \mathcal{N} such that :

- (1) $X^{\mathbb{N}}$ is not negligible.
- (2) For any elements q > q' of $Q \subset [0, 1]$ and any $U \in U$, the difference $P^{U}_{< a}(X^{\mathbb{N}}) \cup P^{U}_{>a'}(X^{\mathbb{N}}) \subseteq X^{\mathbb{N}}$

is negligible.

(3) For any increasing sequence $(U_n)_{n \in \mathbb{N}}$ of elements of \mathcal{U} , with $U = \bigcup_{n \in \mathbb{N}} U_n$, and for any element $q \in Q$, the difference

$$\bigcup_{n\in\mathbb{N},q'\in\mathcal{Q},q'>q}\mathcal{P}^{U_n}_{\geq q'}(X^{\mathbb{N}})\subseteq\bigcup_{q'\in\mathcal{Q},q'>q}\mathcal{P}^U_{\geq q'}(X^{\mathbb{N}})$$

is negligible.

(4) For any $q \in Q \subseteq [0, 1]$ and any $U \in U$, we have

- $\left\{ \begin{array}{l} \bullet \quad \underline{either} \ P^U_{\geq q}(X^{\mathbb{N}}) \ \text{is negligible,} \\ \bullet \quad \underline{or} \ \text{the} \ \underline{difference} \ P^U_{\geq q}(X^{\mathbb{N}}) \subset X^{\mathbb{N}} \ \text{is negligible.} \end{array} \right.$

Identification of the measure :

We want to <u>construct a measure</u> μ on \mathcal{U} from the topology *J* associated with a notion of negligible \mathcal{N} which satisfies properties (1), (2), (3), (4) of the proposition. It is naturally defined as follows :

Definition. -

For any subset $U \in \mathcal{U}$, we <u>define</u>

$$\mu(U) = \inf \{ q \in Q \mid P^U_{>q}(X^{\mathbb{N}}) \text{ is negligible} \}.$$

Remarks. -

It follows from this definition and from property (4) :

(i)
$$P^U_{>q}(X^{\mathbb{N}})$$
 is negligible for any $q > \mu(U)$.

(ii) The difference

$$P^U_{\geq q}(X^{\mathbb{N}}) \subset X^{\mathbb{N}}$$

is negligible for any $q < \mu(U)$, and therefore also for $q = \mu(U)$ is $\mu(U) \in Q$.

Statement and proof of the symmetric property :

Lemma. – For any subset $U \in U$, we have :

(i) $P^U_{\leq q}(X^{\mathbb{N}})$ is negligible for any $q < \mu(U)$.

(ii) The difference

 $\textit{P}^{\textit{U}}_{\leq q}(\textit{X}^{\mathbb{N}}) \subset \textit{X}^{\mathbb{N}}$

is negligible for any $q > \mu(U)$ and also for $q = \mu(U)$ if $\mu(U) \in Q$.

Proof. – We define $\mu_U = \sup\{q \in Q \mid P^U_{\leq q}(X^{\mathbb{N}}) \text{ is negligible}\}.$

The intersections

$$P^U_{\leq q}(X^{\mathbb{N}}) \cap P^U_{\geq q'}(X^{\mathbb{N}})$$

are empty if q < q'.

This implies that $P_{\leq q}^U(X^{\mathbb{N}})$ is negligible if $q < \mu(U)$ and so $\mu_U \ge \mu(U)$.

• The differences

$$\mathsf{P}^{U}_{\leq q}(X^{\mathbb{N}}) \cup \mathsf{P}^{U}_{\geq q'}(X^{\mathbb{N}}) \subseteq X^{\mathbb{N}}$$

are negligible if $q \ge q'$. This implies that the <u>differences</u>

$$P^U_{\leq q}(X^{\mathbb{N}}) \subset X^{\mathbb{N}}$$

are negligible if $q > \mu(U)$, and so $\mu_U \le \mu(U)$.

The growth property of the measure :

Lemma. – For any ordered pair $U_1 \subseteq U_2$ of \mathcal{U} , we have $\mu(U_1) \leq \mu(U_2)$.

Proof. – We have by definition

$$\mu(U_1) = \inf \{ q \in Q \mid P_{\geq q}^{U_1}(X^{\mathbb{N}}) \text{ is } \underline{\text{negligible}} \},$$

 $\mu(\textit{U}_2) = \inf \{ \textit{q} \in \textit{Q} \mid \textit{P}_{\geq \textit{q}}^{\textit{U}_2}(\textit{X}^{\mathbb{N}}) \text{ is } \underline{\text{negligible}} \}.$

The conclusion follows from the fact that the inclusion relation

 $U_1 \subseteq U_2$

implies the inclusion relation

$$\mathcal{P}^{U_1}_{\geq q}(\mathcal{X}^{\mathbb{N}}) \subseteq \mathcal{P}^{U_2}_{\geq q}(\mathcal{X}^{\mathbb{N}})$$

for any $q \in Q$. It follows indeed that

if

$$\mathcal{P}^{\mathcal{U}_1}_{\geq q}(X^{\mathbb{N}})$$
 is negligible $\mathcal{P}^{\mathcal{U}_2}_{\geq q}(X^{\mathbb{N}})$ is negligible.

The property of additivity of the measure :

Lemma. – For all elements
$$U, V \in U$$
, we have

$$\mu(U) + \mu(V) = \mu(U \cup V) + \mu(U \cap V).$$

Proof. – For all elements $q_1, q_2, q_3, q_4 \in Q$ such that

we have the inclusions

$$q_1 + q_2 = q_3 + q_4$$
,

$$\begin{aligned} & P^U_{\geq q_1}(X^{\mathbb{N}}) \cap P^V_{\geq q_2}(X^{\mathbb{N}}) \cap P^{U \cap V}_{\leq q_3}(X^{\mathbb{N}}) \subseteq P^{U \cup V}_{\geq q_4}(X^{\mathbb{N}}), \\ & P^U_{\leq q_1}(X^{\mathbb{N}}) \cap P^V_{\leq q_2}(X^{\mathbb{N}}) \cap P^{U \cap V}_{\geq q_3}(X^{\mathbb{N}}) \subseteq P^{U \cup V}_{\leq q_4}(X^{\mathbb{N}}). \end{aligned}$$

This implies :

The <u>difference</u>

$$\mathsf{P}^{U\cup V}_{\geq q_4}(X^{\mathbb{N}})\subset X^{\mathbb{N}}$$

is negligible if $q_1 < \mu(U), q_2 < \mu(V), q_3 > \mu(U \cap V),$ and so $\mu(\overline{U} \cup V) \ge \mu(U) + \mu(V) - \mu(U \cap V).$

• The difference

$$P^{U\cup V}_{\leq q_4}(X^{\mathbb{N}})\subset X^{\mathbb{N}}$$

is negligible if $q_1 > \mu(U), q_2 > \mu(V), q_3 < \mu(U \cap V),$ and so $\mu(\overline{U} \cup V) \leq \mu(U) + \mu(V) - \mu(U \cap V).$

Compatibility of the measure with countable increasing unions :

Lemma. – For any increasing sequence $(U_n)_{n \in \mathbb{N}}$ of subsets $U_n \in \mathcal{U}$, with $U = \bigcup_{n \in \mathbb{N}} U_n$, we have $\mu(U) = \sup_{n \in \mathbb{N}} \mu(U_n)$. **Proof**. – We already know that $\mu(U) \ge \mu(U_n)$ for any $n \in \mathbb{N}$.

We know on the other hand that for any $q \in Q$, the <u>difference</u>

 $\bigcup_{n \in \mathbb{N}, q' \in Q, q' > q} P_{\geq q'}^{U_n}(X^{\mathbb{N}}) \subseteq \bigcup_{q' \in Q, q' > q} P_{\geq q'}^U(X^{\mathbb{N}})$ is negligible. Moreover, if $q < \mu(U)$, the difference $\bigcup_{q' \in Q, q' > q} P_{\geq q'}^U(X^{\mathbb{N}}) \subset X^{\mathbb{N}}$ is also negligible. Thus, there exists $n \in \mathbb{N}$ and q' > q such that $P_{\geq q'}^{U_n}(X^{\mathbb{N}})$

is not negligible. This implies

$$\mu(U_n)\geq q'>q.$$

The conclusion follows as $q < \mu(U)$ can be chosen arbitrarily close.

The concept of "two-valued" topos :

Definition. – A topos \mathcal{E} is called "<u>two-valued</u>" if the only two subobjects of its terminal object 1 are

 <u>itself</u>, the initial object Ø.

Remark. -

If $\mathcal{E} \cong \mathcal{E}_{\mathbb{T}}$ is the classifying topos of some first-order geometric theory \mathbb{T} , it is "<u>two-valued</u>" if and only if the theory \mathbb{T} is "<u>complete</u>" in the sense that, for any geometric formula φ <u>without free variable</u> written in the signature Σ of φ , we have

- <u>either</u> φ is "provably true", i.e.
 - $\top \vdash \varphi$ is \mathbb{T} -provable,
- <u>or</u> ϕ is "<u>provably false</u>", i.e.

```
\varphi \vdash \perp is \mathbb{T}-provable.
```

A reformulation of the notion of measure in terms of "two-valued" toposes : We still consider a family \mathcal{U} of subsets of a set X, which is stable by finite intersections and countable unions. We still note $\mathcal{U}_{\mathbb{N}}$ the ordered family of subspaces of $X^{\mathbb{N}}$ which are countable unions of finite intersections of subspaces of $X^{\mathbb{N}}$ of the form $\overline{P^U_{\leq \sigma}(X^{\overline{\mathbb{N}}})}$ or $\overline{P^U_{\leq \sigma}(X^{\mathbb{N}})}$ with $U \in \mathcal{U}$ and $q \in Q$. Here, Q is a countable and dense subset of [0, 1], stable under the relation $q_1 + q_2 = q_3 + q_4$ of $[0, 1]^4$. **Definition**. – Let $J_{\mathbb{N}}$ be the smallest Grothendieck topology of $\mathcal{U}_{\mathbb{N}}$ for which : (1) Any <u>countable union</u> $P = \bigcup P_n$ of subspaces $P_n \in \mathcal{U}_{\mathbb{N}}$ is covered by the family of the P_n 's. (2) For any elements q > q' of Q and any $U \in \mathcal{U}$, $X^{\mathbb{N}}$ is <u>covered</u> by $P_{\leq a}^{U}(X^{\mathbb{N}})$ and $P_{\geq a'}^{U}(\overline{X}^{\mathbb{N}})$. 3) For any <u>union</u> $U = \bigcup U_n$ of an increasing sequence of subsets $U_n \in \mathcal{U}$, and any $q \in Q$, the countable family of the $P^{U_n}_{>a'}(X^{\mathbb{N}})$, $n \in \mathbb{N}$, q' > q, $\underline{\textit{covers}} \bigcup_{q' \in Q, q' > q} P^U_{\geq q'}(X^{\mathbb{N}}).$

Reformulation of the equivalence between measures and topologies :

Proposition. – Let $\mathcal{E}_{\mathbb{N}}$ be the topos of sheaves on the site

 $(\mathcal{U}_{\mathbb{N}}, J_{\mathbb{N}})$

consisting in the <u>ordered family</u> $\mathcal{U}_{\mathbb{N}}$, seen as a category, and endowed with the <u>Grothendieck topology</u> $J_{\mathbb{N}}$. Then the <u>equivalence</u> between <u>probability measures</u> μ on \mathcal{U} and <u>Grothendieck topologies</u> J_{μ} on $\mathcal{U}_{\mathbb{N}}$

 $\mu \longleftrightarrow J_{\mu}$

induces a <u>one-to-one</u> correspondence between

- probability measures μ on \mathcal{U} ,
- subtoposes \mathcal{E}_{μ} of $\mathcal{E}_{\mathbb{N}}$ which are "two-valued".

Verification of this reformulation of the equivalence :

Considering a subtopos of $\mathcal{E}_{\mathbb{N}} = (\widehat{\mathcal{U}_{\mathbb{N}}})_{J_{\mathbb{N}}}$ is equivalent to considering a Grothendieck topology

 $J\supseteq J_{\mathbb{N}}$ on $\mathcal{U}_{\mathbb{N}}$.

According to the previous proposition, it suffices to prove that if a topology $J \supseteq J_{\mathbb{N}}$ defines a two-valued topos, then any covering family of morphisms of $\mathcal{U}_{\mathbb{N}}$

 $P_i \subseteq P$, $i \in I$,

contains a countable covering subfamily.

In fact, any *P* or P_i , $i \in I$, covers the whole of $X^{\mathbb{N}}$

or is covered by the empty family.

If some P_i covers $X^{\mathbb{N}}$, it a fortiori covers P.

If, on the contrary, all P_i are covered by the empty family, it is the same with P.

So, *P* admits in both cases a subcovering consisting in <u>at most one element</u> of the family $(P_i)_{i \in I}$.

Points of a topos and "two-valued" subtoposes :

We recall :

Lemma. – Consider a <u>site</u> (C, J). (i) Any <u>topos morphism</u> $\mathcal{E} \xrightarrow{f=(f^*, f_*)} \widehat{C}_J$ <u>canonically factors</u> as the composite $\mathcal{E} \to \widehat{C}_{J'} \hookrightarrow \widehat{C}_J$ <u>of a surjective morphism</u> $\mathcal{E} \to \widehat{C}_{J'}$ and an <u>embedding</u> $\widehat{C}_{J'} \hookrightarrow \widehat{C}_J$. This embedding part is <u>defined by the topology</u> $J' \supseteq J$ on \mathcal{C} for which a family of morphisms of \mathcal{C}

$$(X_i \longrightarrow X)_{i \in I}$$

is covering if its transform by the functor

$$\rho = f^* \circ \ell : \mathcal{C} \xrightarrow{\ell} \widehat{\mathcal{C}}_J \xrightarrow{f^*} \mathcal{E}$$

is globally epimorphic.

(ii) If $\mathcal{E} = \text{Set}$, the topology J' of \mathcal{C} defined by a point Set $\xrightarrow{p} \widehat{\mathcal{C}}_{J}$

is necessarily "two-valued".

Proof of (ii). – Any subobject of the terminal object 1 of $\widehat{\mathcal{C}}_{J'}$ is transformed by p^* in a subobject of $\{\bullet\}$, which is $\{\bullet\}$ or \emptyset .

"Two-valued" subtoposes and points of localic toposes :

To any topos \mathcal{E} , we can associate the <u>distributive lattice</u> O of the <u>subobjects</u> of the terminal object 1 of \mathcal{E} : Indeed, <u>finite intersections</u> \land and <u>arbitrary unions</u> \lor of subobjects of 1 are always defined in \mathcal{E} , and \land is <u>distributive</u> relatively to \lor . The <u>ordered set</u> O seen as a category, and endowed with the topology defined by \lor , defines a topos \widehat{O}_{\lor} endowed with a morphism $\mathcal{E} \longrightarrow \widehat{O}_{\lor}$. The topos \mathcal{E} is said "localic" if this is an isomorphism.

Lemma. – If \mathcal{E} is a localic topos, any "two-valued" subtopos of \mathcal{E} corresponds to a point of \mathcal{E} .

Proof. – Let *J* be a topology on *O* which defines a <u>"two-valued" subtopos</u> of \mathcal{E} . Associate with any object ($X \hookrightarrow 1$) of *O*

$$X \longmapsto egin{cases} \emptyset & ext{if } X \hookrightarrow 1 ext{ is not } J ext{-covering,} \ \{ullet\} & ext{otherwise.} \end{cases}$$

This defines a point of the topos $\mathcal{E} \xrightarrow{\sim} \widehat{O}_V$.

The topos of probability measures :

We still consider a family \mathcal{U} of <u>subsets of a set</u> X, which is <u>stable</u> by <u>finite intersections</u> and <u>countable unions</u>. We still denote $\mathcal{U}_{\mathbb{N}}$ the <u>ordered</u> family of subspaces of $X^{\mathbb{N}}$ which are <u>countable unions of finite intersections</u> of subspaces of $X^{\mathbb{N}}$ <u>of the form</u>

 $P^U_{\geq q}(X^{\mathbb{N}})$ or $P^U_{\leq q}(X^{\mathbb{N}})$ with $U \in \mathcal{U}$ and $q \in Q$.

Here, *Q* is a <u>countable</u> and <u>dense</u> subset of [0, 1], stable by the relation $q_1 + q_2 = q_3 + q_4$ of $[0, 1]^4$.

Corollary. – Let $\mathcal{E}_{\mathbb{N}}$ be the <u>localic</u> topos of sheaves on the site

 $(\mathcal{U}_{\mathbb{N}}, J_{\mathbb{N}})$

consisting in the <u>ordered set</u> $\mathcal{U}_{\mathbb{N}}$ endowed with the <u>topology</u> $J_{\mathbb{N}}$. Then we have a triple equivalence

$$\mu \longleftrightarrow J_{\mu} \longleftrightarrow p_{\mu}$$

between

- probability measures μ on \mathcal{U} ,
- <u>subtoposes</u> $\mathcal{E}_{\mu} = (\mathcal{U}_{\mathbb{N}})_{J_{\mu}}$ of $\mathcal{E}_{\mathbb{N}}$ which are "<u>two-valued</u>",
- points p_{μ} of the topos $\mathcal{E}_{\mathbb{N}}$.

Explicitation of the topology which defines the topos of measures :

The localic topos of probability measures on $\ensuremath{\mathcal{U}}$

$$\mathcal{E}_{\mathbb{N}} = (\mathcal{U}_{\mathbb{N}})_{J_{\mathbb{N}}}$$

is defined as the topos of sheaves on $\mathcal{U}_{\mathbb{N}}$ for the topology $\overline{J_{\mathbb{N}}}$ which was introduced as a generated topology. Here is a characterization of this topology :

Lemma. – A family of morphisms $(P_i \hookrightarrow P)_{i \in I}$ of $\mathcal{U}_{\mathbb{N}}$ is $J_{\mathbb{N}}$ -covering if and only if it contains a countable subfamily $(P_{i_n})_{n \in \mathbb{N}}$ such that the <u>difference</u>

$$\mathsf{P} - \bigcup_{n \in \mathbb{N}} \mathsf{P}_{i_n}$$

is "negligible" in the sense that it is <u>contained</u> in a countable union of subspaces of the form

•
$$\{x_{\bullet} \in X^{\mathbb{N}} \mid p_{-}^{U}(x_{\bullet}) < p_{+}^{U}(x_{\bullet})\}$$
 with $U \in \mathcal{U}$,

•
$$\{x_{\bullet} \in X^{\mathbb{N}} \mid \sup_{n \in \mathbb{N}} p_{-}^{U_n}(x_{\bullet}) < p_{-}^{U}(x_{\bullet})\}$$

for an increasing sequence of subsets $U_n \in U$, $n \in \mathbb{N}$, with $U = \bigcup U_n$.

 $n \in \mathbb{N}$

Non-triviality of the topos of probability measures :

We remark :

Corollary. – If U is a family of <u>subsets</u> of a non-empty set X which is <u>stable</u> by <u>finite intersections</u> and <u>countable unions</u>, we have :

(i) Any element $x \in X$ defines a probability measure δ_x on \mathcal{U} by

$$\mathcal{U} \ni U \longmapsto \begin{cases} 1 & \text{if } x \in U, \\ 0 & \text{if } x \notin U. \end{cases}$$

(ii) A fortiori, the localic topos of probability measures on ${\cal U}$

$$\mathcal{E}_{\mathbb{N}} = (\widehat{\mathcal{U}_{\mathbb{N}}})_{J_{\mathbb{N}}}$$

always has points associated with <u>elements</u> $x \in X$, and the full space

$X^{\mathbb{N}}$

is never negligible for the topology $J_{\mathbb{N}}$.